Dynamics Of Topologically Generic Homeomorphisms


Download Dynamics Of Topologically Generic Homeomorphisms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamics Of Topologically Generic Homeomorphisms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Dynamics of Topologically Generic Homeomorphisms


Dynamics of Topologically Generic Homeomorphisms

Author: Ethan Akin

language: en

Publisher: American Mathematical Soc.

Release Date: 2003


DOWNLOAD





The goal of this work is to describe the dynamics of generic homeomorphisms of certain compact metric spaces $X$. Here ``generic'' is used in the topological sense -- a property of homeomorphisms on $X$ is generic if the set of homeomorphisms with the property contains a residual subset (in the sense of Baire category) of the space of all homeomorphisms on $X$. The spaces $X$ we consider are those with enough local homogeneity to allow certain localized perturbations of homeomorphisms; for example, any compact manifold is such a space. We show that the dynamics of a generic homeomorphism is quite complicated, with a number of distinct dynamical behaviors coexisting (some resemble subshifts of finite type, others, which we call `generalized adding machines', appear strictly periodic when viewed to any finite precision, but are not actually periodic). Such a homeomorphism has infinitely many, intricately nested attractors and repellors, and uncountably many distinct dynamically-connected components of the chain recurrent set. We single out several types of these ``chain components'', and show that each type occurs densely (in an appropriate sense) in the chain recurrent set. We also identify one type that occurs generically in the chain recurrent set. We also show that, at least for $X$ a manifold, the chain recurrent set of a generic homeomorphism is a Cantor set, so its complement is open and dense. Somewhat surprisingly, there is a residual subset of $X$ consisting of points whose limit sets are chain components of a type other than the type of chain components that are residual in the space of all chain components. In fact, for each generic homeomorphism on $X$ there is a residual subset of points of $X$ satisfying a stability condition stronger than Lyapunov stability.

Typical Dynamics of Volume Preserving Homeomorphisms


Typical Dynamics of Volume Preserving Homeomorphisms

Author: Steve Alpern

language: en

Publisher: Cambridge University Press

Release Date: 2001-03-29


DOWNLOAD





This 2000 book provides a self-contained introduction to typical properties of homeomorphisms. Examples of properties of homeomorphisms considered include transitivity, chaos and ergodicity. A key idea here is the interrelation between typical properties of volume preserving homeomorphisms and typical properties of volume preserving bijections of the underlying measure space. The authors make the first part of this book very concrete by considering volume preserving homeomorphisms of the unit n-dimensional cube, and they go on to prove fixed point theorems (Conley–Zehnder– Franks). This is done in a number of short self-contained chapters which would be suitable for an undergraduate analysis seminar or a graduate lecture course. Much of this work describes the work of the two authors, over the last twenty years, in extending to different settings and properties, the celebrated result of Oxtoby and Ulam that for volume homeomorphisms of the unit cube, ergodicity is a typical property.

Algebraic and Topological Dynamics


Algebraic and Topological Dynamics

Author: S. F. Koli︠a︡da

language: en

Publisher: American Mathematical Soc.

Release Date: 2005


DOWNLOAD





This volume contains a collection of articles from the special program on algebraic and topological dynamics and a workshop on dynamical systems held at the Max-Planck Institute (Bonn, Germany). It reflects the extraordinary vitality of dynamical systems in its interaction with a broad range of mathematical subjects. Topics covered in the book include asymptotic geometric analysis, transformation groups, arithmetic dynamics, complex dynamics, symbolic dynamics, statisticalproperties of dynamical systems, and the theory of entropy and chaos. The book is suitable for graduate students and researchers interested in dynamical systems.