Dynamics Of Nonholonomic Systems

Download Dynamics Of Nonholonomic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamics Of Nonholonomic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamics of Nonholonomic Systems

Author: Juru Isaakovich Ne_mark
language: en
Publisher: American Mathematical Soc.
Release Date: 2004-07-16
The goal of this book is to give a comprehensive and systematic exposition of the mechanics of nonholonomic systems, including the kinematics and dynamics of nonholonomic systems with classical nonholonomic constraints, the theory of stability of nonholonomic systems, technical problems of the directional stability of rolling systems, and the general theory of electrical machines. The book contains a large number of examples and illustrations.
Mechanics of non-holonomic systems

Author: Sh.Kh Soltakhanov
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-05-27
A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold of all possible positions of system at given instant. The tangential space is partitioned by the equations of constraints into two orthogonal subspaces. In one of them for the constraints up to the second order, the motion low is given by the equations of constraints and in the other one for ideal constraints, it is described by the vector equation without reactions of connections. In the whole space the motion low involves Lagrangian multipliers. It is shown that for the holonomic and nonholonomic constraints up to the second order, these multipliers can be found as the function of time, positions of system, and its velocities. The application of Lagrangian multipliers for holonomic systems permits us to construct a new method for determining the eigenfrequencies and eigenforms of oscillations of elastic systems and also to suggest a special form of equations for describing the system of motion of rigid bodies. The nonholonomic constraints, the order of which is greater than two, are regarded as programming constraints such that their validity is provided due to the existence of generalized control forces, which are determined as the functions of time. The closed system of differential equations, which makes it possible to find as these control forces, as the generalized Lagrange coordinates, is compound. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics.