Dynamical Systems And Their Applications In Biology

Download Dynamical Systems And Their Applications In Biology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamical Systems And Their Applications In Biology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamical Systems and Their Applications in Biology

Author: Shigui Ruan
language: en
Publisher: American Mathematical Soc.
Release Date: 2003-01-01
This volume is based on the proceedings of the International Workshop on Dynamical Systems and their Applications in Biology held at the Canadian Coast Guard College on Cape Breton Island (Nova Scotia, Canada). It presents a broad picture of the current research surrounding applications of dynamical systems in biology, particularly in population biology. The book contains 19 papers and includes articles on the qualitative and/or numerical analysis of models involving ordinary, partial, functional, and stochastic differential equations. Applications include epidemiology, population dynamics, and physiology. The material is suitable for graduate students and research mathematicians interested in ordinary differential equations and their applications in biology. Also available by Ruan, Wolkowicz, and Wu is Differential Equations with Applications to Biology, Volume 21 in the AMS series Fields Institute Communications.
Dynamical Systems in Population Biology

Author: Xiao-Qiang Zhao
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-05
Population dynamics is an important subject in mathematical biology. A cen tral problem is to study the long-term behavior of modeling systems. Most of these systems are governed by various evolutionary equations such as difference, ordinary, functional, and partial differential equations (see, e. g. , [165, 142, 218, 119, 55]). As we know, interactive populations often live in a fluctuating environment. For example, physical environmental conditions such as temperature and humidity and the availability of food, water, and other resources usually vary in time with seasonal or daily variations. Therefore, more realistic models should be nonautonomous systems. In particular, if the data in a model are periodic functions of time with commensurate period, a periodic system arises; if these periodic functions have different (minimal) periods, we get an almost periodic system. The existing reference books, from the dynamical systems point of view, mainly focus on autonomous biological systems. The book of Hess [106J is an excellent reference for periodic parabolic boundary value problems with applications to population dynamics. Since the publication of this book there have been extensive investigations on periodic, asymptotically periodic, almost periodic, and even general nonautonomous biological systems, which in turn have motivated further development of the theory of dynamical systems. In order to explain the dynamical systems approach to periodic population problems, let us consider, as an illustration, two species periodic competitive systems dUI dt = !I(t,Ul,U2), (0.
Dynamical Systems, Bifurcation Analysis and Applications

This book is the result of Southeast Asian Mathematical Society (SEAMS) School 2018 on Dynamical Systems and Bifurcation Analysis (DySBA). It addresses the latest developments in the field of dynamical systems, and highlights the importance of numerical continuation studies in tracking both stable and unstable steady states and bifurcation points to gain better understanding of the dynamics of the systems. The SEAMS School 2018 on DySBA was held in Penang from 6th to 13th August at the School of Mathematical Sciences, Universiti Sains Malaysia.The SEAMS Schools are part of series of intensive study programs that aim to provide opportunities for an advanced learning experience in mathematics via planned lectures, contributed talks, and hands-on workshop. This book will appeal to those postgraduates, lecturers and researchers working in the field of dynamical systems and their applications. Senior undergraduates in Mathematics will also find it useful.