Dynamical System Theory In Biology Stability Theory And Its Applications

Download Dynamical System Theory In Biology Stability Theory And Its Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamical System Theory In Biology Stability Theory And Its Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Stability of Dynamical Systems

In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.
The Dynamic Systems of Basic Economic Growth Models

Author: Bjarne S. Jensen
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-02-02
Two central problems in the pure theory of economic growth are analysed in this monograph: 1) the dynamic laws governing the economic growth processes, 2) the kinematic and geometric properties of the set of solutions to the dynamic systems. With allegiance to rigor and the emphasis on the theoretical fundamentals of prototype mathematical growth models, the treatise is written in the theorem-proof style. To keep the exposition orderly and as smooth as possible, the economic analysis has been separated from the purely mathematical issues, and hence the monograph is organized in two books. Regarding the scope and content of the two books, an "Introduction and Over view" has been prepared to offer both motivation and a brief account. The introduc tion is especially designed to give a recapitulation of the mathematical theory and results presented in Book II, which are used as the unifying mathematical framework in the analysis and exposition of the different economic growth models in Book I. Economists would probably prefer to go directly to Book I and proceed by consult ing the mathematical theorems of Book II in confirming the economic theorems in Book I. Thereby, both the independence and interdependence of the economic and mathematical argumentations are respected.