Dynamical Entropy In Operator Algebras

Download Dynamical Entropy In Operator Algebras PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamical Entropy In Operator Algebras book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamical Entropy in Operator Algebras

Author: Sergey Neshveyev
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-09-22
During the last 30 years there have been several attempts at extending the notion of entropy to noncommutative dynamical systems. The authors present in the book the two most successful approaches to the extensions of measure entropy and topological entropy to the noncommutative setting and analyze in detail the main models in the theory. The book addresses mathematicians and physicists, including graduate students, who are interested in quantum dynamical systems and applications of operator algebras and ergodic theory. Although the authors assume a basic knowledge of operator algebras, they give precise definitions of the notions and in most cases complete proofs of the results which are used.
Classification of Nuclear C*-Algebras. Entropy in Operator Algebras

Author: M. Rordam
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-18
to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of papers by Murray and von Neumann in the 1930's and 1940's. A von Neumann algebra is a self-adjoint unital subalgebra M of the algebra of bounded operators of a Hilbert space which is closed in the weak operator topology. According to von Neumann's bicommutant theorem, M is closed in the weak operator topology if and only if it is equal to the commutant of its commutant. Afactor is a von Neumann algebra with trivial centre and the work of Murray and von Neumann contained a reduction of all von Neumann algebras to factors and a classification of factors into types I, II and III. C* -algebras are self-adjoint operator algebras on Hilbert space which are closed in the norm topology. Their study was begun in the work of Gelfand and Naimark who showed that such algebras can be characterized abstractly as involutive Banach algebras, satisfying an algebraic relation connecting the norm and the involution. They also obtained the fundamental result that a commutative unital C* -algebra is isomorphic to the algebra of complex valued continuous functions on a compact space - its spectrum. Since then the subject of operator algebras has evolved into a huge mathematical endeavour interacting with almost every branch of mathematics and several areas of theoretical physics.
Classification of Nuclear C*-Algebras. Entropy in Operator Algebras

Author: M. Rordam
language: en
Publisher: Springer Science & Business Media
Release Date: 2001-11-20
to the Encyclopaedia Subseries on Operator Algebras and Non-Commutative Geometry The theory of von Neumann algebras was initiated in a series of papers by Murray and von Neumann in the 1930's and 1940's. A von Neumann algebra is a self-adjoint unital subalgebra M of the algebra of bounded operators of a Hilbert space which is closed in the weak operator topology. According to von Neumann's bicommutant theorem, M is closed in the weak operator topology if and only if it is equal to the commutant of its commutant. Afactor is a von Neumann algebra with trivial centre and the work of Murray and von Neumann contained a reduction of all von Neumann algebras to factors and a classification of factors into types I, II and III. C* -algebras are self-adjoint operator algebras on Hilbert space which are closed in the norm topology. Their study was begun in the work of Gelfand and Naimark who showed that such algebras can be characterized abstractly as involutive Banach algebras, satisfying an algebraic relation connecting the norm and the involution. They also obtained the fundamental result that a commutative unital C* -algebra is isomorphic to the algebra of complex valued continuous functions on a compact space - its spectrum. Since then the subject of operator algebras has evolved into a huge mathematical endeavour interacting with almost every branch of mathematics and several areas of theoretical physics.