Dynamic Systems Biology Modeling And Simulation


Download Dynamic Systems Biology Modeling And Simulation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Systems Biology Modeling And Simulation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Dynamic Systems Biology Modeling and Simulation


Dynamic Systems Biology Modeling and Simulation

Author: Joseph DiStefano III

language: en

Publisher: Academic Press

Release Date: 2015-01-10


DOWNLOAD





Dynamic Systems Biology Modeling and Simuation consolidates and unifies classical and contemporary multiscale methodologies for mathematical modeling and computer simulation of dynamic biological systems – from molecular/cellular, organ-system, on up to population levels. The book pedagogy is developed as a well-annotated, systematic tutorial – with clearly spelled-out and unified nomenclature – derived from the author's own modeling efforts, publications and teaching over half a century. Ambiguities in some concepts and tools are clarified and others are rendered more accessible and practical. The latter include novel qualitative theory and methodologies for recognizing dynamical signatures in data using structural (multicompartmental and network) models and graph theory; and analyzing structural and measurement (data) models for quantification feasibility. The level is basic-to-intermediate, with much emphasis on biomodeling from real biodata, for use in real applications. - Introductory coverage of core mathematical concepts such as linear and nonlinear differential and difference equations, Laplace transforms, linear algebra, probability, statistics and stochastics topics - The pertinent biology, biochemistry, biophysics or pharmacology for modeling are provided, to support understanding the amalgam of "math modeling with life sciences - Strong emphasis on quantifying as well as building and analyzing biomodels: includes methodology and computational tools for parameter identifiability and sensitivity analysis; parameter estimation from real data; model distinguishability and simplification; and practical bioexperiment design and optimization - Companion website provides solutions and program code for examples and exercises using Matlab, Simulink, VisSim, SimBiology, SAAMII, AMIGO, Copasi and SBML-coded models - A full set of PowerPoint slides are available from the author for teaching from his textbook. He uses them to teach a 10 week quarter upper division course at UCLA, which meets twice a week, so there are 20 lectures. They can easily be augmented or stretched for a 15 week semester course - Importantly, the slides are editable, so they can be readily adapted to a lecturer's personal style and course content needs. The lectures are based on excerpts from 12 of the first 13 chapters of DSBMS. They are designed to highlight the key course material, as a study guide and structure for students following the full text content - The complete PowerPoint slide package (~25 MB) can be obtained by instructors (or prospective instructors) by emailing the author directly, at: [email protected]

Systems Biology: Simulation of Dynamic Network States


Systems Biology: Simulation of Dynamic Network States

Author: Bernhard Ø. Palsson

language: en

Publisher: Cambridge University Press

Release Date: 2011-05-26


DOWNLOAD





Biophysical models have been used in biology for decades, but they have been limited in scope and size. In this book, Bernhard Ø. Palsson shows how network reconstructions that are based on genomic and bibliomic data, and take the form of established stoichiometric matrices, can be converted into dynamic models using metabolomic and fluxomic data. The Mass Action Stoichiometric Simulation (MASS) procedure can be used for any cellular process for which data is available and allows a scalable step-by-step approach to the practical construction of network models. Specifically, it can treat integrated processes that need explicit accounting of small molecules and protein, which allows simulation at the molecular level. The material has been class-tested by the author at both the undergraduate and graduate level. All computations in the text are available online in MATLAB® and Mathematica® workbooks, allowing hands-on practice with the material.

Biological Modeling and Simulation


Biological Modeling and Simulation

Author: Russell Schwartz

language: en

Publisher: MIT Press

Release Date: 2008-07-25


DOWNLOAD





A practice-oriented survey of techniques for computational modeling and simulation suitable for a broad range of biological problems. There are many excellent computational biology resources now available for learning about methods that have been developed to address specific biological systems, but comparatively little attention has been paid to training aspiring computational biologists to handle new and unanticipated problems. This text is intended to fill that gap by teaching students how to reason about developing formal mathematical models of biological systems that are amenable to computational analysis. It collects in one place a selection of broadly useful models, algorithms, and theoretical analysis tools normally found scattered among many other disciplines. It thereby gives the aspiring student a bag of tricks that will serve him or her well in modeling problems drawn from numerous subfields of biology. These techniques are taught from the perspective of what the practitioner needs to know to use them effectively, supplemented with references for further reading on more advanced use of each method covered. The text, which grew out of a class taught at Carnegie Mellon University, covers models for optimization, simulation and sampling, and parameter tuning. These topics provide a general framework for learning how to formulate mathematical models of biological systems, what techniques are available to work with these models, and how to fit the models to particular systems. Their application is illustrated by many examples drawn from a variety of biological disciplines and several extended case studies that show how the methods described have been applied to real problems in biology.