Dynamic Optimization

Download Dynamic Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamic Optimization

This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.
Principles of Dynamic Optimization

Author: Piernicola Bettiol
language: en
Publisher: Springer Nature
Release Date: 2024-06-18
This monograph explores key principles in the modern theory of dynamic optimization, incorporating important advances in the field to provide a comprehensive, mathematically rigorous reference. Emphasis is placed on nonsmooth analytic techniques, and an in-depth treatment of necessary conditions, minimizer regularity, and global optimality conditions related to the Hamilton-Jacobi equation is given. New, streamlined proofs of fundamental theorems are incorporated throughout the text that eliminate earlier, cumbersome reductions and constructions. The first chapter offers an extended overview of dynamic optimization and its history that details the shortcomings of the elementary theory and demonstrates how a deeper analysis aims to overcome them. Aspects of dynamic programming well-matched to analytical techniques are considered in the final chapter, including characterization of extended-value functions associated with problems having endpoint and state constraints, inverse verification theorems, sensitivity relationships, and links to the maximum principle. This text will be a valuable resource for those seeking an understanding of dynamic optimization. The lucid exposition, insights into the field, and comprehensive coverage will benefit postgraduates, researchers, and professionals in system science, control engineering, optimization, and applied mathematics.