Dynamic Fuzzy Machine Learning

Download Dynamic Fuzzy Machine Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Fuzzy Machine Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamic Fuzzy Machine Learning

Author: Fanzhang Li
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2017-12-04
Machine learning is widely used for data analysis. Dynamic fuzzy data are one of the most difficult types of data to analyse in the field of big data, cloud computing, the Internet of Things, and quantum information. At present, the processing of this kind of data is not very mature. The authors carried out more than 20 years of research, and show in this book their most important results. The seven chapters of the book are devoted to key topics such as dynamic fuzzy machine learning models, dynamic fuzzy self-learning subspace algorithms, fuzzy decision tree learning, dynamic concepts based on dynamic fuzzy sets, semi-supervised multi-task learning based on dynamic fuzzy data, dynamic fuzzy hierarchy learning, examination of multi-agent learning model based on dynamic fuzzy logic. This book can be used as a reference book for senior college students and graduate students as well as college teachers and scientific and technical personnel involved in computer science, artificial intelligence, machine learning, automation, data analysis, mathematics, management, cognitive science, and finance. It can be also used as the basis for teaching the principles of dynamic fuzzy learning.
Data Mining in Dynamic Social Networks and Fuzzy Systems

Many organizations, whether in the public or private sector, have begun to take advantage of the tools and techniques used for data mining. Utilizing data mining tools, these organizations are able to reveal the hidden and unknown information from available data. Data Mining in Dynamic Social Networks and Fuzzy Systems brings together research on the latest trends and patterns of data mining tools and techniques in dynamic social networks and fuzzy systems. With these improved modern techniques of data mining, this publication aims to provide insight and support to researchers and professionals concerned with the management of expertise, knowledge, information, and organizational development.
Theory and Novel Applications of Machine Learning

Even since computers were invented, many researchers have been trying to understand how human beings learn and many interesting paradigms and approaches towards emulating human learning abilities have been proposed. The ability of learning is one of the central features of human intelligence, which makes it an important ingredient in both traditional Artificial Intelligence (AI) and emerging Cognitive Science. Machine Learning (ML) draws upon ideas from a diverse set of disciplines, including AI, Probability and Statistics, Computational Complexity, Information Theory, Psychology and Neurobiology, Control Theory and Philosophy. ML involves broad topics including Fuzzy Logic, Neural Networks (NNs), Evolutionary Algorithms (EAs), Probability and Statistics, Decision Trees, etc. Real-world applications of ML are widespread such as Pattern Recognition, Data Mining, Gaming, Bio-science, Telecommunications, Control and Robotics applications. This books reports the latest developments and futuristic trends in ML.