Dynamic Force Spectroscopy And Biomolecular Recognition

Download Dynamic Force Spectroscopy And Biomolecular Recognition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Force Spectroscopy And Biomolecular Recognition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamic Force Spectroscopy and Biomolecular Recognition

Molecular recognition, also known as biorecognition, is the heart of all biological interactions. Originating from protein stretching experiments, dynamic force spectroscopy (DFS) allows for the extraction of detailed information on the unbinding process of biomolecular complexes. It is becoming progressively more important in biochemical studies and is finding wider applications in areas such as biophysics and polymer science. In six chapters, Dynamic Force Spectroscopy and Biomolecular Recognition covers the most recent ideas and advances in the field of DFS applied to biorecognition: Chapter 1: Reviews the basic and novel aspects of biorecognition and discusses the emerging capabilities of single-molecule techniques to disclose kinetic properties and molecular mechanisms usually hidden in bulk measurements Chapter 2: Describes the basic principle of atomic force microsocopy (AFM) and DFS, with particular attention to instrumental and theoretical aspects more strictly related to the study of biomolecules Chapter 3: Overviews the theoretical background in which experimental data taken in nonequilibrum measurements of biomolecular unbinding forces are extrapolated to equilibrium conditions Chapter 4: Reviews the most common and efficient strategies adopted in DFS experiments to immobilize the interacting biomolecules to the AFM tip and to the substrate Chapter 5: Presents and discusses the most representative aspects related to the analysis of DFS data and the challenges of integrating well-defined criteria to calibrate data in automatic routinary procedures Chapter 6: Overviews the most relevant DFS applications to study biorecognition processes, including the biotin/avidin pair, and selected results on various biological complexes, including antigen/antibody, proteins/DNA, and complexes involved in adhesion processes Chapter 7: Summarizes the main results obtained by DFS applied to study biorecognition processes with forthcoming theoretical and experimental advances Although DFS is a widespread, worldwide technique, no books focused on this subject have been available until now. Dynamic Force Spectroscopy and Biomolecular Recognition provides the state of the art of experimental data analysis and theoretical procedures, making it a useful tool for researchers applying DFS to study biorecognition processes.
Molecular Manipulation with Atomic Force Microscopy

With the invention of scanning probe techniques in the early 1980s, scientists can now play with single atoms, single molecules, and even single bonds. Force, dynamics, and function can now be probed at the single-molecule level. Molecular Manipulation with Atomic Force Microscopy (AFM) presents a series of topics that discuss concepts and methodologies used to manipulate and study single (bio)molecules with AFM. The first part is dedicated to the pulling of single molecules with force spectroscopy to investigate molecular interactions, mechanics, and mechanochemical processes, and the second part to the manipulation, repositioning, and targeted delivery of single molecules on substrates. Single molecule manipulation is an exciting area of research which made important breakthroughs in nanoscience and which could find potential applications in a diverse range of disciplines, including chemistry, biology, physics, material and polymer science, and engineering. New and experienced AFM researchers looking for applications beyond imaging will find a wealth of information in this informative volume.
Nanotribology and Nanomechanics

This textbook and comprehensive reference source and serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. This 4th edition has been completely revised and updated, concentrating on the key measurement techniques, their applications, and theoretical modeling of interfaces. It provides condensed knowledge of the field from the mechanics and materials science perspectives to graduate students, research workers, and practicing engineers.