Dynamic Flexible Constraint Satisfaction And Its Application To Ai Planning

Download Dynamic Flexible Constraint Satisfaction And Its Application To Ai Planning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Flexible Constraint Satisfaction And Its Application To Ai Planning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamic Flexible Constraint Satisfaction and its Application to AI Planning

Author: Ian Miguel
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
First, I would like to thank my principal supervisor Dr Qiang Shen for all his help, advice and friendship throughout. Many thanks also to my second supervisor Dr Peter Jarvis for his enthusiasm, help and friendship. I would also like to thank the other members of the Approximate and Qualitative Reasoning group at Edinburgh who have also helped and inspired me. This project has been funded by an EPSRC studentship, award num ber 97305803. I would like, therefore, to extend my gratitude to EPSRC for supporting this work. Many thanks to the staff at Edinburgh University for all their help and support and for promptly fixing any technical problems that I have had . My whole family have been both encouraging and supportive throughout the completion of this book, for which I am forever indebted. York, April 2003 Ian Miguel Contents List of Figures XV 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Solving Classical CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Applicat ions of Classical CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 3 Limitations of Classical CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 3. 1 Flexible CSP 6 1. 3. 2 Dynamic CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1. 4 Dynamic Flexible CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1. 5 Flexible Planning: a DFCSP Application . . . . . . . . . . . . . . . . . . 8 1. 6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1. 7 Contributions and their Significance 11 2 The Constraint Satisfaction Problem 13 2. 1 Constraints and Constraint Graphs . . . . . . . . .. . . . . . . . . . . . . . 13 2. 2 Tree Search Solution Techniques for Classical CSP . . . . . . . . . . 16 2. 2. 1 Backtrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2. 2. 2 Backjumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. 2. 3 Conflict-Directed Backjumping . . . . . . . . . . . . . . . . . . . . . 19 2. 2. 4 Backmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Dynamic Flexible Constraint Satisfaction and Its Application to AI Planning

Constraints are a natural means of knowledage representation in many disparate fields. A constraint often takes the form of an equation or inequality, but in the most abstract senseis simply a logical relation among several variables expressing a set of admissable value combinations. The following are simple examples: the sum of two variables must equal 30; no two adjacent countries on the map may be coloured the same. It is this generality and simplicity of structure which underly the ubiquity of the constraint-based representation in Artificial Intelligence.
Artificial Intelligence and Security

This two-volume set of LNCS 12736-12737 constitutes the refereed proceedings of the 7th International Conference on Artificial Intelligence and Security, ICAIS 2021, which was held in Dublin, Ireland, in July 2021. The conference was formerly called “International Conference on Cloud Computing and Security” with the acronym ICCCS. The total of 93 full papers and 29 short papers presented in this two-volume proceedings was carefully reviewed and selected from 1013 submissions. Overall, a total of 224 full and 81 short papers were accepted for ICAIS 2021; the other accepted papers are presented in CCIS 1422-1424. The papers were organized in topical sections as follows: Part I: Artificial intelligence; and big data Part II: Big data; cloud computing and security; encryption and cybersecurity; information hiding; IoT security; and multimedia forensics