Dynamic Aspects Of Conformation Changes In Biological Macromolecules

Download Dynamic Aspects Of Conformation Changes In Biological Macromolecules PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dynamic Aspects Of Conformation Changes In Biological Macromolecules book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Dynamic Aspects of Conformation Changes in Biological Macromolecules

Author: C. Sadron
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
On the day after the 1959 Cambridge Congress, during which the International Union of Pure and Applied Biophysics was founded, a biophysics section was formed within the Society of Physical Chemistry (Societe de Chimie Physique). Since then, three of the Society's annual meetings (the 11th, 17th, and 23rd) were devoted exclusively to the physico-chemical study of biological systems. The first of these was held in June 1961 at a hotel in Col de Voza, at the foot of an alpine glacier above Chamonix. The second, in May 1967, took place in the more learned setting of the venerable rooms of the National Museum of Natural History in Paris. The third - the one dealt with in the present volume - was recently held at Orleans-La Source in the newly built lecture theatres of the young University, which is near the great Institutes of the National Centre for Scientific Research (CNRS), on the Sologne plateau. These three stages are milestones of an evolution which characterises (at least schematically) the explosive evolution of biological physico-chemistry. The first colloquium, with the title 'Deoxyribonucleic Acid: Structure, Synthesis and Functions', actually marks the first contact of the physical chemist with one of the then most prestigious biological macromolecules, the structure of which had just been discovered, and in this way celebrated one of the first and most striking successes of molecular biology.
Macromolecules

Author: Hans-Georg Elias
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-06-29
Like so many of its kind, this textbook originated from the requirements of teaching. While lecturing on macromolecular science as a required subject for chemists and materials scientists on the undergraduate, graduate, and postgraduate levels at Swiss Federal Institute of Technology at Zurich (1960-1971), I needed a one-volume textbook which treated the whole field of macromolecular science, from its chemistry and physics to its applications, in a not too elementary manner. This textbook thus intends to bridge the gap between the often oversimplified introductory books and the highly specialized texts and monographs that cover only parts of macromolecular science. This first English edition is based on the third German edition (1975), which is about 40% different from the first German edition (1971), a result of rapid progress in macromolecular science and the less rapid education of the writer. This text intends to survey the whole field of macromolecular science. Its organization results from the following considerations. The chemical structure of macromolecular compounds should be independent of the method of synthesis, at least in the ideal case. Part I is thus concerned with the chemical and physical structure of macro molecules. Properties depend on structure. Solution properties are thus discussed in Part II, solid state properties in Part III. There are other reasons for discussing properties before syntheses: For example, it is difficult to under stand equilibrium polymerization without knowledge of solution thermody of the glass temperature, etc.
Protein Conformational Dynamics

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.