Does Deep Learning Require Coding


Download Does Deep Learning Require Coding PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Does Deep Learning Require Coding book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Learning in Bioinformatics


Deep Learning in Bioinformatics

Author: Habib Izadkhah

language: en

Publisher: Academic Press

Release Date: 2022-01-08


DOWNLOAD





Deep Learning in Bioinformatics: Techniques and Applications in Practice introduces the topic in an easy-to-understand way, exploring how it can be utilized for addressing important problems in bioinformatics, including drug discovery, de novo molecular design, sequence analysis, protein structure prediction, gene expression regulation, protein classification, biomedical image processing and diagnosis, biomolecule interaction prediction, and in systems biology. The book also presents theoretical and practical successes of deep learning in bioinformatics, pointing out problems and suggesting future research directions. Dr. Izadkhah provides valuable insights and will help researchers use deep learning techniques in their biological and bioinformatics studies. - Introduces deep learning in an easy-to-understand way - Presents how deep learning can be utilized for addressing some important problems in bioinformatics - Presents the state-of-the-art algorithms in deep learning and bioinformatics - Introduces deep learning libraries in bioinformatics

Python Programming, Deep Learning


Python Programming, Deep Learning

Author: Anthony Adams

language: en

Publisher: Anthony Adams

Release Date: 2021-12-17


DOWNLOAD





Easily Boost Your Skills In Python Programming & Become A Master In Deep Learning & Data Analysis! 💻 Python is an interpreted, high-level, general-purpose programming language that emphasizes code readability with its notable use of significant whitespace. What makes Python so popular in the IT industry is that it uses an object-oriented approach, which enables programmers to write clear, logical code for all types of projects, whether big or small. Hone your Python Programming skills and gain a sharp edge over other programmers the EASIEST way possible... with this practical beginner’s guide! In his 3-in-1 Python crash course for beginners, Anthony Adams gives novices like you simple, yet efficient tips and tricks to become a MASTER in Python coding for artificial intelligence, neural networks, machine learning, and data science/analysis! Here’s what you’ll get: ✅ Highly innovative ways to boost your understanding of Python programming, data analysis, and machine learning ✅ Quickly and effectively stop fraud with machine learning ✅ Practical and efficient exercises that make understanding Python quick & easy And so much more! As a beginner, you might feel a bit intimidated by the complexities of coding. Add the fact that most Python Programming crash course guides make learning harder than it has to be! ✓ With the help of this 3-in-1 guide, you will be given carefully sequenced Python Programming lessons that’ll maximize your understanding, and equip you with all the skills for real-life application! ★ Thrive in the IT industry with this comprehensive Python Programming crash course! ★ Scroll up, Click on “Buy Now”, and Start Learning Today!

Deep Learning with PyTorch


Deep Learning with PyTorch

Author: Eli Stevens

language: en

Publisher: Manning

Release Date: 2020-08-04


DOWNLOAD





“We finally have the definitive treatise on PyTorch! It covers the basics and abstractions in great detail. I hope this book becomes your extended reference document.” —Soumith Chintala, co-creator of PyTorch Key Features Written by PyTorch’s creator and key contributors Develop deep learning models in a familiar Pythonic way Use PyTorch to build an image classifier for cancer detection Diagnose problems with your neural network and improve training with data augmentation Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About The Book Every other day we hear about new ways to put deep learning to good use: improved medical imaging, accurate credit card fraud detection, long range weather forecasting, and more. PyTorch puts these superpowers in your hands. Instantly familiar to anyone who knows Python data tools like NumPy and Scikit-learn, PyTorch simplifies deep learning without sacrificing advanced features. It’s great for building quick models, and it scales smoothly from laptop to enterprise. Deep Learning with PyTorch teaches you to create deep learning and neural network systems with PyTorch. This practical book gets you to work right away building a tumor image classifier from scratch. After covering the basics, you’ll learn best practices for the entire deep learning pipeline, tackling advanced projects as your PyTorch skills become more sophisticated. All code samples are easy to explore in downloadable Jupyter notebooks. What You Will Learn Understanding deep learning data structures such as tensors and neural networks Best practices for the PyTorch Tensor API, loading data in Python, and visualizing results Implementing modules and loss functions Utilizing pretrained models from PyTorch Hub Methods for training networks with limited inputs Sifting through unreliable results to diagnose and fix problems in your neural network Improve your results with augmented data, better model architecture, and fine tuning This Book Is Written For For Python programmers with an interest in machine learning. No experience with PyTorch or other deep learning frameworks is required. About The Authors Eli Stevens has worked in Silicon Valley for the past 15 years as a software engineer, and the past 7 years as Chief Technical Officer of a startup making medical device software. Luca Antiga is co-founder and CEO of an AI engineering company located in Bergamo, Italy, and a regular contributor to PyTorch. Thomas Viehmann is a Machine Learning and PyTorch speciality trainer and consultant based in Munich, Germany and a PyTorch core developer. Table of Contents PART 1 - CORE PYTORCH 1 Introducing deep learning and the PyTorch Library 2 Pretrained networks 3 It starts with a tensor 4 Real-world data representation using tensors 5 The mechanics of learning 6 Using a neural network to fit the data 7 Telling birds from airplanes: Learning from images 8 Using convolutions to generalize PART 2 - LEARNING FROM IMAGES IN THE REAL WORLD: EARLY DETECTION OF LUNG CANCER 9 Using PyTorch to fight cancer 10 Combining data sources into a unified dataset 11 Training a classification model to detect suspected tumors 12 Improving training with metrics and augmentation 13 Using segmentation to find suspected nodules 14 End-to-end nodule analysis, and where to go next PART 3 - DEPLOYMENT 15 Deploying to production


Recent Search