Distributions Partial Differential Equations And Harmonic Analysis


Download Distributions Partial Differential Equations And Harmonic Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributions Partial Differential Equations And Harmonic Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Distributions, Partial Differential Equations, and Harmonic Analysis


Distributions, Partial Differential Equations, and Harmonic Analysis

Author: Dorina Mitrea

language: en

Publisher: Springer

Release Date: 2018-12-29


DOWNLOAD





The aim of this book is to offer, in a concise, rigorous, and largely self-contained manner, a rapid introduction to the theory of distributions and its applications to partial differential equations and harmonic analysis. The book is written in a format suitable for a graduate course spanning either over one-semester, when the focus is primarily on the foundational aspects, or over a two-semester period that allows for the proper amount of time to cover all intended applications as well. It presents a balanced treatment of the topics involved, and contains a large number of exercises (upwards of two hundred, more than half of which are accompanied by solutions), which have been carefully chosen to amplify the effect, and substantiate the power and scope, of the theory of distributions. Graduate students, professional mathematicians, and scientifically trained people with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-study guide. Throughout, a special effort has been made to develop the theory of distributions not as an abstract edifice but rather give the reader a chance to see the rationale behind various seemingly technical definitions, as well as the opportunity to apply the newly developed tools (in the natural build-up of the theory) to concrete problems in partial differential equations and harmonic analysis, at the earliest opportunity. The main additions to the current, second edition, pertain to fundamental solutions (through the inclusion of the Helmholtz operator, the perturbed Dirac operator, and their iterations) and the theory of Sobolev spaces (built systematically from the ground up, exploiting natural connections with the Fourier Analysis developed earlier in the monograph).

Distributions


Distributions

Author: J.J. Duistermaat

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-08-09


DOWNLOAD





This textbook is an application-oriented introduction to the theory of distributions, a powerful tool used in mathematical analysis. The treatment emphasizes applications that relate distributions to linear partial differential equations and Fourier analysis problems found in mechanics, optics, quantum mechanics, quantum field theory, and signal analysis. The book is motivated by many exercises, hints, and solutions that guide the reader along a path requiring only a minimal mathematical background.

Distribution Theory Applied to Differential Equations


Distribution Theory Applied to Differential Equations

Author: Adina Chirilă

language: en

Publisher: Springer Nature

Release Date: 2021-02-08


DOWNLOAD





This book presents important contributions to modern theories concerning the distribution theory applied to convex analysis (convex functions, functions of lower semicontinuity, the subdifferential of a convex function). The authors prove several basic results in distribution theory and present ordinary differential equations and partial differential equations by providing generalized solutions. In addition, the book deals with Sobolev spaces, which presents aspects related to variation problems, such as the Stokes system, the elasticity system and the plate equation. The authors also include approximate formulations of variation problems, such as the Galerkin method or the finite element method. The book is accessible to all scientists, and it is especially useful for those who use mathematics to solve engineering and physics problems. The authors have avoided concepts and results contained in other books in order to keep the book comprehensive. Furthermore, they do not present concrete simplified models and pay maximal attention to scientific rigor.