Distributions Fourier Transforms And Some Of Their Applications To Physics

Download Distributions Fourier Transforms And Some Of Their Applications To Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributions Fourier Transforms And Some Of Their Applications To Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Distributions, Fourier Transforms And Some Of Their Applications To Physics

Author: Thomas Schucker
language: en
Publisher: World Scientific Publishing Company
Release Date: 1991-04-22
In this book, distributions are introduced via sequences of functions. This approach due to Temple has two virtues:The Fourier transform is defined for functions and generalized to distributions, while the Green function is defined as the outstanding application of distributions. Using Fourier transforms, the Green functions of the important linear differential equations in physics are computed. Linear algebra is reviewed with emphasis on Hilbert spaces. The author explains how linear differential operators and Fourier transforms naturally fit into this frame, a point of view that leads straight to generalized fourier transforms and systems of special functions like spherical harmonics, Hermite, Laguerre, and Bessel functions.
Distributions, Fourier Transforms and Some of Their Applications to Physics

In this book, distributions are introduced via sequences of functions. This approach due to Temple has two virtues: It only presupposes standard calculus.It allows to justify manipulations necessary in physical applications. The Fourier transform is defined for functions and generalized to distributions, while the Green function is defined as the outstanding application of distributions. Using Fourier transforms, the Green functions of the important linear differential equations in physics are computed. Linear algebra is reviewed with emphasis on Hilbert spaces. The author explains how linear differential operators and Fourier transforms naturally fit into this frame, a point of view that leads straight to generalized fourier transforms and systems of special functions like spherical harmonics, Hermite, Laguerre, and Bessel functions.
A Guide to Distribution Theory and Fourier Transforms

This important book provides a concise exposition of the basic ideas of the theory of distribution and Fourier transforms and its application to partial differential equations. The author clearly presents the ideas, precise statements of theorems, and explanations of ideas behind the proofs. Methods in which techniques are used in applications are illustrated, and many problems are included. The book also introduces several significant recent topics, including pseudodifferential operators, wave front sets, wavelets, and quasicrystals. Background mathematical prerequisites have been kept to a minimum, with only a knowledge of multidimensional calculus and basic complex variables needed to fully understand the concepts in the book.A Guide to Distribution Theory and Fourier Transforms can serve as a textbook for parts of a course on Applied Analysis or Methods of Mathematical Physics, and in fact it is used that way at Cornell.