Distributed Data Aggregation For Sparse Recovery In Wireless Sensor Networks

Download Distributed Data Aggregation For Sparse Recovery In Wireless Sensor Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributed Data Aggregation For Sparse Recovery In Wireless Sensor Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Distributed Data Aggregation for Sparse Recovery in Wireless Sensor Networks

We consider the approximate sparse recovery problem in Wireless Sensor Networks (WSNs) using Compressed Sensing/Compressive Sampling (CS). The goal is to recover the n-dimensional data values by querying only m “n sensors based on some linear projection of sensor readings. To solve this problem, a two-tiered sampling model is considered and a novel distributed compressive sparse sampling (DCSS) algorithm is proposed based on sparse binary CS measurement matrix. In the two-tiered sampling model, each sensor first samples the environment independently. Then the fusion center (FC), acting as a pseudo-sensor, samples the sensor network to select a subset of sensors (m out of n) that directly respond to the FC for data recovery purpose. The sparse binary matrix is designed using unbalanced expander graph which achieves the state-of-the-art performance for CS schemes. This binary matrix can be interpreted as a sensor selection matrix-whose fairness is analyzed. Extensive experiments on both synthetic and real data set show that by querying only the minimum amount of m sensors using the DCSS algorithm, the CS recovery accuracy can be as good as dense measurement matrices (e.g., Gaussian, Fourier Scrambles). We also show that the sparse binary measurement matrix works well on compressible data which has the closest recovery result to the known best k-term approximation. The recovery is robust against noisy measurements. The sparsity and binary properties of the measurement matrix contribute, to a great extent, the reduction of the in-network communication cost as well as the computational burden.
Advances in Signal Processing and Intelligent Recognition Systems

This book constitutes the refereed proceedings of the 5th International Symposium on Advances in Signal Processing and Intelligent Recognition Systems, SIRS 2019, held in Trivandrum, India, in December 2019. The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 63 submissions. The papers cover wide research fields including information retrieval, human-computer interaction (HCI), information extraction, speech recognition.
The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015, Beni Suef, Egypt

The conference topics address different theoretical and practical aspects, and implementing solutions for intelligent systems and informatics disciplines including bioinformatics, computer science, medical informatics, biology, social studies, as well as robotics research. The conference also discuss and present solutions to the cloud computing and big data mining which are considered hot research topics. The conference papers discussed different topics – techniques, models, methods, architectures, as well as multi aspect, domain-specific, and new solutions for the above disciplines. The accepted papers have been grouped into five parts: Part I—Intelligent Systems and Informatics, addressing topics including, but not limited to, medical application, predicting student performance, action classification, and detection of dead stained microscopic cells, optical character recognition, plant identification, rehabilitation of disabled people. Part II—Hybrid Intelligent Systems, addressing topics including, but not limited to, EMG signals, text classification, geomagnetic inverse problem, email filtering. Part III—Multimedia Computing and Social Networks, addressing topics including, but not limited to, augmented reality, telepresence robot, video flash matting, community detection, quality images, face thermal image extraction, MRI tumor segmentation. Part V—Cloud Computing and Big Data Mining, discussing topics including, but not limited to, mining on microblogs, query optimization, big data classification, access control, friendsourcing, and assistive technology. Part VI—Swarm Optimization and Its Applications, addressing topics including, but not limited to, solving set covering problem, adaptive PSO for CT liver segmentation, water quality assessment, attribute reduction, fish detection, solving manufacturing cell design problem.