Distributed Control And Optimization Of Networked Microgrids

Download Distributed Control And Optimization Of Networked Microgrids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributed Control And Optimization Of Networked Microgrids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Distributed Control and Optimization of Networked Microgrids

This book presents new techniques and methods for distributed control and optimization of networked microgrids. Distributed consensus issues under network-based and event-triggered mechanisms are first addressed in a multi-agent system framework, which can explicitly characterize the relationship between communication resources and the control performance. Then, considering the effects of network uncertainties, multi-agent system-based distributed schemes are tailored to solve the fundamental issues of networked microgrids such as distributed frequency regulation, voltage regulation, active power sharing/load sharing, and energy management. The monograph will contribute to stimulating extensive interest of researchers in electrical and control fields.
Control and Optimization of Distributed Generation Systems

This text is an introduction to the use of control in distributed power generation. It shows the reader how reliable control can be achieved so as to realize the potential of small networks of diverse energy sources, either singly or in coordination, for meeting concerns of energy cost, energy security and environmental protection. The book demonstrates how such microgrids, interconnecting groups of generating units and loads within a local area, can be an effective means of balancing electrical supply and demand. It takes advantage of the ability to connect and disconnect microgrids from the main body of the power grid to give flexibility in response to special events, planned or unplanned. In order to capture the main opportunities for expanding the power grid and to present the plethora of associated open problems in control theory Control and Optimization of Distributed Generation Systems is organized to treat three key themes, namely: system architecture and integration; modelling and analysis; and communications and control. Each chapter makes use of examples and simulations and appropriate problems to help the reader study. Tools helpful to the reader in accessing the mathematical analysis presented within the main body of the book are given in an appendix. Control and Optimization of Distributed Generation Systems will enable readers new to the field of distributed power generation and networked control, whether experienced academic migrating from another field or graduate student beginning a research career, to familiarize themselves with the important points of the control and regulation of microgrids. It will also be useful for practising power engineers wishing to keep abreast of changes in power grids necessitated by the diversification of generating methods.
Energy Internet

This textbook is the first of its kind to comprehensively describe the energy Internet, a vast network that efficiently supplies electricity to anyone anywhere and is an internet based wide area network for information and energy fusion. The chapters are organized into five parts: Architecture and Design, Energy Switching and Routing, Information and Communication, Energy Management Systems and Energy Market and Trading, and capture the spectrum of this exponential transformation, while also presenting the plethora of open problems that this transformation poses for researchers from mixed academic backgrounds. The scope includes key technologies on distributed energy sources, microgrids, energy storage, solar and wind energy, power grid, smart grid, power quality, power electronics, data centers, distributed computing and networking, cloud computing and big data, and software-defined networking. The book presents the basic principles of energy internet and emphasizes the current research trends in the field of energy Internet at an advanced level. It includes instructor materials, case-studies, and worked examples throughout. This is an ideal resource for students in advanced graduate-level courses and special topics in energy, information and control systems, and is a useful tool for utility engineers who seek an intuitive understanding of the emerging applications of energy Internet.