Distributed Consensus With Visual Perception In Multi Robot Systems

Download Distributed Consensus With Visual Perception In Multi Robot Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Distributed Consensus With Visual Perception In Multi Robot Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Distributed Consensus with Visual Perception in Multi-Robot Systems

This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: • distributed consensus algorithms; • data association and robustness problems; • convergence speed; and • cooperative mapping. The book first puts forward algorithmic solutions to these problems and then supports them with empirical validations working with real images. It provides the reader with a deeper understanding of the problems associated to the perception of the world by a team of cooperating robots with onboard cameras. Academic researchers and graduate students working with multi-robot systems, or investigating problems of distributed control or computer vision and cooperative perception will find this book of material assistance with their studies.
Control of Multiple Robots Using Vision Sensors

This monograph introduces novel methods for the control and navigation of mobile robots using multiple-1-d-view models obtained from omni-directional cameras. This approach overcomes field-of-view and robustness limitations, simultaneously enhancing accuracy and simplifying application on real platforms. The authors also address coordinated motion tasks for multiple robots, exploring different system architectures, particularly the use of multiple aerial cameras in driving robot formations on the ground. Again, this has benefits of simplicity, scalability and flexibility. Coverage includes details of: a method for visual robot homing based on a memory of omni-directional images; a novel vision-based pose stabilization methodology for non-holonomic ground robots based on sinusoidal-varying control inputs; an algorithm to recover a generic motion between two 1-d views and which does not require a third view; a novel multi-robot setup where multiple camera-carrying unmanned aerial vehicles are used to observe and control a formation of ground mobile robots; and three coordinate-free methods for decentralized mobile robot formation stabilization. The performance of the different methods is evaluated both in simulation and experimentally with real robotic platforms and vision sensors. Control of Multiple Robots Using Vision Sensors will serve both academic researchers studying visual control of single and multiple robots and robotics engineers seeking to design control systems based on visual sensors.
Robotic Vision: Technologies for Machine Learning and Vision Applications

Robotic systems consist of object or scene recognition, vision-based motion control, vision-based mapping, and dense range sensing, and are used for identification and navigation. As these computer vision and robotic connections continue to develop, the benefits of vision technology including savings, improved quality, reliability, safety, and productivity are revealed. Robotic Vision: Technologies for Machine Learning and Vision Applications is a comprehensive collection which highlights a solid framework for understanding existing work and planning future research. This book includes current research on the fields of robotics, machine vision, image processing and pattern recognition that is important to applying machine vision methods in the real world.