Dissimilarity Representation For Pattern Recognition The Foundations And Applications


Download Dissimilarity Representation For Pattern Recognition The Foundations And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dissimilarity Representation For Pattern Recognition The Foundations And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

The Dissimilarity Representation for Pattern Recognition


The Dissimilarity Representation for Pattern Recognition

Author: El?bieta P?kalska

language: en

Publisher: World Scientific

Release Date: 2005


DOWNLOAD





This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.

Structural, Syntactic, and Statistical Pattern Recognition


Structural, Syntactic, and Statistical Pattern Recognition

Author: Edwin R. Hancock

language: en

Publisher: Springer

Release Date: 2010-08-28


DOWNLOAD





This volume in the Springer Lecture Notes in Computer Science (LNCS) series contains the papers presented at the S+SSPR 2010 Workshops, which was the seventh occasion that SPR and SSPR workshops have been held jointly. S+SSPR 2010 was organized by TC1 and TC2, Technical Committees of the International Association for Pattern Recognition(IAPR), andheld inCesme, Izmir, whichis a seaside resort on the Aegean coast of Turkey. The conference took place during August 18–20, 2010, only a few days before the 20th International Conference on Pattern Recognition (ICPR) which was held in Istanbul. The aim of the series of workshops is to create an international forum for the presentation of the latest results and exchange of ideas between researchers in the ?elds of statistical and structural pattern recognition. SPR 2010 and SSPR 2010 received a total of 99 paper submissions from many di?erent countries around the world, giving it a truly international perspective, as has been the case for previous S+SSPR workshops. This volume contains 70 accepted papers, 39 for oral and 31 for poster presentation. In addition to par- lel oral sessions for SPR and SSPR, there were two joint oral sessions of interest to both SPR and SSPR communities. Furthermore, to enhance the workshop experience, there were two joint panel sessions on “Structural Learning” and “Clustering,” in which short author presentations were followed by discussion. Another innovation this year was the ?lming of the proceedings by Videol- tures.

Pattern Recognition - Applications and Methods


Pattern Recognition - Applications and Methods

Author: Pedro Latorre Carmona

language: en

Publisher: Springer Science & Business Media

Release Date: 2013-02-28


DOWNLOAD





This edited book includes extended and revised versions of a set of selected papers from the First International Conference on Pattern Recognition (ICPRAM 2012), held in Vilamoura, Algarve, Portugal, from 6 to 8 February, 2012, sponsored by the Institute for Systems and Technologies of Information Control and Communication (INSTICC) and held in cooperation with the Association for the Advancement of Artificial Intelligence (AAAI) and Pattern Analysis, Statistical Modelling and Computational Learning (PASCAL2). The conference brought together researchers, engineers and practitioners interested on the areas of Pattern Recognition, both from theoretical and application perspectives.