Discretization Methods And Iterative Solvers Based On Domain Decomposition

Download Discretization Methods And Iterative Solvers Based On Domain Decomposition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discretization Methods And Iterative Solvers Based On Domain Decomposition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discretization Methods and Iterative Solvers Based on Domain Decomposition

Author: Barbara I. Wohlmuth
language: en
Publisher: Springer Science & Business Media
Release Date: 2001-02-27
Domain decomposition methods provide powerful and flexible tools for the numerical approximation of partial differential equations arising in the modeling of many interesting applications in science and engineering. This book deals with discretization techniques on non-matching triangulations and iterative solvers with particular emphasis on mortar finite elements, Schwarz methods and multigrid techniques. New results on non-standard situations as mortar methods based on dual basis functions and vector field discretizations are analyzed and illustrated by numerical results. The role of trace theorems, harmonic extensions, dual norms and weak interface conditions is emphasized. Although the original idea was used successfully more than a hundred years ago, these methods are relatively new for the numerical approximation. The possibilites of high performance computations and the interest in large- scale problems have led to an increased research activity.
Discretization Methods and Iterative Solvers Based on Domain Decomposition

Author: Barbara I. Wohlmuth
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
Domain decomposition methods provide powerful and flexible tools for the numerical approximation of partial differential equations arising in the modeling of many interesting applications in science and engineering. This book deals with discretization techniques on non-matching triangulations and iterative solvers with particular emphasis on mortar finite elements, Schwarz methods and multigrid techniques. New results on non-standard situations as mortar methods based on dual basis functions and vector field discretizations are analyzed and illustrated by numerical results. The role of trace theorems, harmonic extensions, dual norms and weak interface conditions is emphasized. Although the original idea was used successfully more than a hundred years ago, these methods are relatively new for the numerical approximation. The possibilites of high performance computations and the interest in large- scale problems have led to an increased research activity.
Multigrid Finite Element Methods for Electromagnetic Field Modeling

This is the first comprehensive monograph that features state-of-the-art multigrid methods for enhancing the modeling versatility, numerical robustness, and computational efficiency of one of the most popular classes of numerical electromagnetic field modeling methods: the method of finite elements. The focus of the publication is the development of robust preconditioners for the iterative solution of electromagnetic field boundary value problems (BVPs) discretized by means of finite methods. Specifically, the authors set forth their own successful attempts to utilize concepts from multigrid and multilevel methods for the effective preconditioning of matrices resulting from the approximation of electromagnetic BVPs using finite methods. Following the authors' careful explanations and step-by-step instruction, readers can duplicate the authors' results and take advantage of today's state-of-the-art multigrid/multilevel preconditioners for finite element-based iterative electromagnetic field solvers. Among the highlights of coverage are: * Application of multigrid, multilevel, and hybrid multigrid/multilevel preconditioners to electromagnetic scattering and radiation problems * Broadband, robust numerical modeling of passive microwave components and circuits * Robust, finite element-based modal analysis of electromagnetic waveguides and cavities * Application of Krylov subspace-based methodologies for reduced-order macromodeling of electromagnetic devices and systems * Finite element modeling of electromagnetic waves in periodic structures The authors provide more than thirty detailed algorithms alongside pseudo-codes to assist readers with practical computer implementation. In addition, each chapter includes an applications section with helpful numerical examples that validate the authors' methodologies and demonstrate their computational efficiency and robustness. This groundbreaking book, with its coverage of an exciting new enabling computer-aided design technology, is an essential reference for computer programmers, designers, and engineers, as well as graduate students in engineering and applied physics.