Discrete Subgroups Of Semisimple Lie Groups


Download Discrete Subgroups Of Semisimple Lie Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Subgroups Of Semisimple Lie Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Discrete Subgroups of Semisimple Lie Groups


Discrete Subgroups of Semisimple Lie Groups

Author: Gregori A. Margulis

language: en

Publisher: Springer Science & Business Media

Release Date: 1991-02-15


DOWNLOAD





Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.

Discrete Subgroups of Lie Groups


Discrete Subgroups of Lie Groups

Author: Madabusi S. Raghunathan

language: en

Publisher: Springer

Release Date: 2012-11-09


DOWNLOAD





This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.

Discrete Subgroups of Semisimple Lie Groups


Discrete Subgroups of Semisimple Lie Groups

Author: Gregori A. Margulis

language: en

Publisher: Springer

Release Date: 1991-03-01


DOWNLOAD





A detailed treatment of the geometric aspects of discrete groups was carried out by Raghunathan in his book "Discrete subgroups of Lie Groups" which appeared in 1972. In particular he covered the theory of lattices in nilpotent and solvable Lie groups, results of Mal'cev and Mostow, and proved the Borel density theorem and local rigidity theorem ofSelberg-Weil. He also included some results on unipotent elements of discrete subgroups as well as on the structure of fundamental domains. The chapters concerning discrete subgroups of semi simple Lie groups are essentially concerned with results which were obtained in the 1960's. The present book is devoted to lattices, i.e. discrete subgroups of finite covolume, in semi-simple Lie groups. By "Lie groups" we not only mean real Lie groups, but also the sets of k-rational points of algebraic groups over local fields k and their direct products. Our results can be applied to the theory of algebraic groups over global fields. For example, we prove what is in some sense the best possible classification of "abstract" homomorphisms of semi-simple algebraic group over global fields.