Discrete Quantum Walks On Graphs And Digraphs

Download Discrete Quantum Walks On Graphs And Digraphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Quantum Walks On Graphs And Digraphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discrete Quantum Walks on Graphs and Digraphs

Author: Chris Godsil
language: en
Publisher: Cambridge University Press
Release Date: 2023-01-12
Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory.
Discrete Quantum Walks on Graphs and Digraphs

Author: Chris Godsil
language: en
Publisher: Cambridge University Press
Release Date: 2023-01-12
Explore the mathematics arising from discrete quantum walks in this introduction to a rapidly developing area.
Discrete Quantum Walks on Graphs and Digraphs

This thesis studies various models of discrete quantum walks on graphs and digraphs via a spectral approach. A discrete quantum walk on a digraph $X$ is determined by a unitary matrix $U$, which acts on complex functions of the arcs of $X$. Generally speaking, $U$ is a product of two sparse unitary matrices, based on two direct-sum decompositions of the state space. Our goal is to relate properties of the walk to properties of $X$, given some of these decompositions. We start by exploring two models that involve coin operators, one due to Kendon, and the other due to Aharonov, Ambainis, Kempe, and Vazirani. While $U$ is not defined as a function in the adjacency matrix of the graph $X$, we find exact spectral correspondence between $U$ and $X$. This leads to characterization of rare phenomena, such as perfect state transfer and uniform average vertex mixing, in terms of the eigenvalues and eigenvectors of $X$. We also construct infinite families of graphs and digraphs that admit the aforementioned phenomena. The second part of this thesis analyzes abstract quantum walks, with no extra assumption on $U$. We show that knowing the spectral decomposition of $U$ leads to better understanding of the time-averaged limit of the probability distribution. In particular, we derive three upper bounds on the mixing time, and characterize different forms of uniform limiting distribution, using the spectral information of $U$. Finally, we construct a new model of discrete quantum walks from orientable embeddings of graphs. We show that the behavior of this walk largely depends on the vertex-face incidence structure. Circular embeddings of regular graphs for which $U$ has few eigenvalues are characterized. For instance, if $U$ has exactly three eigenvalues, then the vertex-face incidence structure is a symmetric $2$-design, and $U$ is the exponential of a scalar multiple of the skew-symmetric adjacency matrix of an oriented graph. We prove that, for every regular embedding of a complete graph, $U$ is the transition matrix of a continuous quantum walk on an oriented graph.