Discrete Mathematics With Graph Theory Classic Version

Download Discrete Mathematics With Graph Theory Classic Version PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discrete Mathematics With Graph Theory Classic Version book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discrete Mathematics with Graph Theory

0. Yes, there are proofs! 1. Logic 2. Sets and relations 3. Functions 4. The integers 5. Induction and recursion 6. Principles of counting 7. Permutations and combinations 8. Algorithms 9. Graphs 10. Paths and circuits 11. Applications of paths and circuits 12. Trees 13. Planar graphs and colorings 14. The Max flow-min cut theorem.
Discrete Mathematics with Graph Theory (Classic Version)

This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. Far more "user friendly" than the vast majority of similar books, this text is truly written with the "beginning" reader in mind. The pace is tight, the style is light, and the text emphasizes theorem proving throughout. The authors emphasize "Active Reading," a skill vital to success in learning how to think mathematically (and write clean, error-free programs).
Combinatorics and Graph Theory

Author: John Harris
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-04-03
There are certain rules that one must abide by in order to create a successful sequel. — Randy Meeks, from the trailer to Scream 2 While we may not follow the precise rules that Mr. Meeks had in mind for s- cessful sequels, we have made a number of changes to the text in this second edition. In the new edition, we continue to introduce new topics with concrete - amples, we provide complete proofs of almost every result, and we preserve the book’sfriendlystyle andlivelypresentation,interspersingthetextwith occasional jokes and quotations. The rst two chapters, on graph theory and combinatorics, remain largely independent, and may be covered in either order. Chapter 3, on in nite combinatorics and graphs, may also be studied independently, although many readers will want to investigate trees, matchings, and Ramsey theory for nite sets before exploring these topics for in nite sets in the third chapter. Like the rst edition, this text is aimed at upper-division undergraduate students in mathematics, though others will nd much of interest as well. It assumes only familiarity with basic proof techniques, and some experience with matrices and in nite series. The second edition offersmany additionaltopics for use in the classroom or for independentstudy. Chapter 1 includesa new sectioncoveringdistance andrelated notions in graphs, following an expanded introductory section. This new section also introduces the adjacency matrix of a graph, and describes its connection to important features of the graph.