Discovering Mathematics

Download Discovering Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discovering Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Discovering Mathematics

Author: Jiří Gregor
language: en
Publisher: Springer Science & Business Media
Release Date: 2010-12-21
The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. Interrelated concepts are connected by hyperlinks, pointing toward easier or more difficult problems so as to show paths of mathematical reasoning. Basic definitions and theorems can also be found by hyperlinks from relevant places. Problems are open to alternative formulations, generalizations, simplifications, and verification of hypotheses by the reader; this is shown to be helpful in solving problems. The book presents how advanced mathematical software can aid all stages of mathematical reasoning while the mathematical content remains in foreground. The authors show how software can contribute to deeper understanding and to enlarging the scope of teaching for students and teachers of mathematics.
Discovering Mathematics

The term "mathematics" usually suggests an array of familiar problems with solutions derived from well-known techniques. Discovering Mathematics: The Art of Investigation takes a different approach, exploring how new ideas and chance observations can be pursued, and focusing on how the process invariably leads to interesting questions that would never have otherwise arisen. With puzzles involving coins, postage stamps, and other commonplace items, students are challenged to account for the simple explanations behind perplexing mathematical phenomena. Elementary methods and solutions allow readers to concentrate on the way in which the material is explored, as well as on strategies for answers that aren't immediately obvious. The problems don't require the kind of sophistication that would put them out of reach of ordinary students, but they're sufficiently complex to capture the essential features of mathematical discovery. Complete solutions appear at the end.
Knots and Surfaces

Author: David W. Farmer
language: en
Publisher: American Mathematical Soc.
Release Date: 1996
In most mathematics textbooks, the most exciting part of mathematics - the process of invention and discovery - is completely hidden from the student. The aim of Knots and Surfaces is to change all that. Knots and Surfaces guides the reader through Euler's formula, one and two-sided surfaces, and knot theory using games and examples. By means of a series of carefully selected tasks, this book leads the reader on to discover some real mathematics. There are no formulas to memorize; no procedures to follow. This book is a guide to the mathematics - it starts you in the right direction and brings you back if you stray too far. Discovery is left to you. This book is aimed at undergraduates and those with little background knowledge of mathematics.