Discovering Evolution Equations With Applications


Download Discovering Evolution Equations With Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Discovering Evolution Equations With Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Discovering Evolution Equations with Applications


Discovering Evolution Equations with Applications

Author: Mark McKibben

language: en

Publisher: CRC Press

Release Date: 2010-07-19


DOWNLOAD





Discovering Evolution Equations with Applications: Volume 1-Deterministic Equations provides an engaging, accessible account of core theoretical results of evolution equations in a way that gradually builds intuition and culminates in exploring active research. It gives nonspecialists, even those with minimal prior exposure to analysis, the foundation to understand what evolution equations are and how to work with them in various areas of practice. After presenting the essentials of analysis, the book discusses homogenous finite-dimensional ordinary differential equations. Subsequent chapters then focus on linear homogenous abstract, nonhomogenous linear, semi-linear, functional, Sobolev-type, neutral, delay, and nonlinear evolution equations. The final two chapters explore research topics, including nonlocal evolution equations. For each class of equations, the author develops a core of theoretical results concerning the existence and uniqueness of solutions under various growth and compactness assumptions, continuous dependence upon initial data and parameters, convergence results regarding the initial data, and elementary stability results. By taking an applications-oriented approach, this self-contained, conversational-style book motivates readers to fully grasp the mathematical details of studying evolution equations. It prepares newcomers to successfully navigate further research in the field.

Discovering Evolution Equations with Applications


Discovering Evolution Equations with Applications

Author: Mark A. McKibben

language: en

Publisher:

Release Date: 2010


DOWNLOAD





Fractional Evolution Equations and Inclusions


Fractional Evolution Equations and Inclusions

Author: Yong Zhou

language: en

Publisher: Academic Press

Release Date: 2016-02-05


DOWNLOAD





Fractional evolution inclusions are an important form of differential inclusions within nonlinear mathematical analysis. They are generalizations of the much more widely developed fractional evolution equations (such as time-fractional diffusion equations) seen through the lens of multivariate analysis. Compared to fractional evolution equations, research on the theory of fractional differential inclusions is however only in its initial stage of development. This is important because differential models with the fractional derivative providing an excellent instrument for the description of memory and hereditary properties, and have recently been proved valuable tools in the modeling of many physical phenomena. The fractional order models of real systems are always more adequate than the classical integer order models, since the description of some systems is more accurate when the fractional derivative is used. The advantages of fractional derivatization become evident in modeling mechanical and electrical properties of real materials, description of rheological properties of rocks and in various other fields. Such models are interesting for engineers and physicists as well as so-called pure mathematicians. Phenomena investigated in hybrid systems with dry friction, processes of controlled heat transfer, obstacle problems and others can be described with the help of various differential inclusions, both linear and nonlinear. Fractional Evolution Equations and Inclusions is devoted to a rapidly developing area of the research for fractional evolution equations & inclusions and their applications to control theory. It studies Cauchy problems for fractional evolution equations, and fractional evolution inclusions with Hille-Yosida operators. It discusses control problems for systems governed by fractional evolution equations. Finally it provides an investigation of fractional stochastic evolution inclusions in Hilbert spaces. - Systematic analysis of existence theory and topological structure of solution sets for fractional evolution inclusions and control systems - Differential models with fractional derivative provide an excellent instrument for the description of memory and hereditary properties, and their description and working will provide valuable insights into the modelling of many physical phenomena suitable for engineers and physicists - The book provides the necessary background material required to go further into the subject and explore the rich research literature