Dimension Theory In Dynamical Systems


Download Dimension Theory In Dynamical Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Dimension Theory In Dynamical Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Dimension Theory in Dynamical Systems


Dimension Theory in Dynamical Systems

Author: Ya. B. Pesin

language: en

Publisher: University of Chicago Press

Release Date: 1997


DOWNLOAD





In this book, Yakov B. Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Topics include, but are not restricted to, the general concept of dimension; the dimension interpretation of some well-known invariants of dynamical systems, such as topological and measure-theoretic entropies; formulas of dimension of some well-known hyperbolic invariant sets, such as Julia sets, horseshoes, and solenoids; mathematical analysis of dimensions that are most often used in applied research, such as correlation and information dimensions; and mathematical theory of invariant multifractals. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes. The book can also be used as a text for a special topics course in the theory of dynamical systems and dimension theory.

Dimension Theory in Dynamical Systems


Dimension Theory in Dynamical Systems

Author: Yakov B. Pesin

language: en

Publisher: University of Chicago Press

Release Date: 2008-04-15


DOWNLOAD





The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.

Dimension Theory in Dynamical Systems


Dimension Theory in Dynamical Systems

Author: Yakov B. Pesin

language: en

Publisher: University of Chicago Press

Release Date: 1998-01-05


DOWNLOAD





The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.