Digital Image Inpainting Techniques Analysis And Applications

Download Digital Image Inpainting Techniques Analysis And Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Digital Image Inpainting Techniques Analysis And Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
DIGITAL IMAGE INPAINTING: TECHNIQUES, ANALYSIS AND APPLICATIONS

Author: Dr. RAJKUMAR L. BIRADAR
language: en
Publisher: Archers & Elevators Publishing House
Release Date:
Proceedings of International Conference on Computational Intelligence

The book presents high quality research papers presented at International Conference on Computational Intelligence (ICCI 2020) held at Indian Institute of Information Technology, Pune, India during 12–13 December, 2020. The topics covered are artificial intelligence, neural network, deep learning techniques, fuzzy theory and systems, rough sets, self-organizing maps, machine learning, chaotic systems, multi-agent systems, computational optimization ensemble classifiers, reinforcement learning, decision trees, support vector machines, hybrid learning, statistical learning. metaheuristics algorithms: evolutionary and swarm-based algorithms like genetic algorithms, genetic programming, differential evolution, particle swarm optimization, whale optimization, spider monkey optimization, firefly algorithm, memetic algorithms. And also machine vision, Internet of Things, image processing, image segmentation, data clustering, sentiment analysis, big data, computer networks, signal processing, supply chain management, web and text mining, distributed systems, bioinformatics, embedded systems, expert system, forecasting, pattern recognition, planning and scheduling, time series analysis, human-computer interaction, web mining, natural language processing, multimedia systems, and quantum computing.
Image Processing and Analysis

This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.