Diffusion In Crystalline Solids

Download Diffusion In Crystalline Solids PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Diffusion In Crystalline Solids book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Diffusion in Solids

Author: Helmut Mehrer
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-07-24
Diffusion is a vital topic in solid-state physics and chemistry, physical metallurgy and materials science. Diffusion processes are ubiquitous in solids at elevated temperatures. A thorough understanding of diffusion in materials is crucial for materials development and engineering. This book first gives an account of the central aspects of diffusion in solids, for which the necessary background is a course in solid state physics. It then provides easy access to important information about diffusion in metals, alloys, semiconductors, ion-conducting materials, glasses and nanomaterials. Several diffusion-controlled phenomena, including ionic conduction, grain-boundary and dislocation pipe diffusion, are considered as well. Graduate students in solid-state physics, physical metallurgy, materials science, physical and inorganic chemistry or geophysics will benefit from this book as will physicists, chemists, metallurgists, materials engineers in academic and industrial research laboratories.
Diffusion in Solids

Author: Martin Eden Glicksman
language: en
Publisher: Wiley-Interscience
Release Date: 1999-11-30
This book offers a modern treatment of diffusion in solids, covering such core topics as the transport of mass through the lattice of a crystalline solid. Part I of the book develops basic concepts in diffusion field theory and illustrates them with several applications, while Part II focuses on key solid-state principles needed to apply diffusion theory to real materials.
Diffusion in Crystalline Solids

Diffusion in Crystalline Solids addresses some of the most active areas of research on diffusion in crystalline solids. Topics covered include measurement of tracer diffusion coefficients in solids, diffusion in silicon and germanium, atom transport in oxides of the fluorite structure, tracer diffusion in concentrated alloys, diffusion in dislocations, grain boundary diffusion mechanisms in metals, and the use of the Monte Carlo Method to simulate diffusion kinetics. This book is made up of eight chapters and begins with an introduction to the measurement of diffusion coefficients with radioisotopes. The following three chapters consider diffusion in materials of substantial technological importance such as silicon and germanium. Atomic transport in oxides of the fluorite structure is described, and diffusion in concentrated alloys, including intermetallic compounds, is analyzed. The next two chapters delve into diffusion along short-circuiting paths, focusing on the effect of diffusion down dislocations on the form of the tracer concentration profile. The book also discusses the mechanisms of diffusion in grain boundaries in metals by invoking considerable work done on grain-boundary structure. The last two chapters are concerned with computer simulation, paying particular attention to machine calculations and the Monte Carlo method. The book concludes by exploring the fundamental atomic migration process and presenting some state-of-the-art calculations for defect energies and the topology of the saddle surface. Students and researchers of material science will find this book extremely useful.