Differential Quadrature And Differential Quadrature Based Element Methods

Download Differential Quadrature And Differential Quadrature Based Element Methods PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Quadrature And Differential Quadrature Based Element Methods book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Differential Quadrature and Differential Quadrature Based Element Methods

Differential Quadrature and Differential Quadrature Based Element Methods: Theory and Applications is a comprehensive guide to these methods and their various applications in recent years. Due to the attractive features of rapid convergence, high accuracy, and computational efficiency, the differential quadrature method and its based element methods are increasingly being used to study problems in the area of structural mechanics, such as static, buckling and vibration problems of composite structures and functional material structures. This book covers new developments and their applications in detail, with accompanying FORTRAN and MATLAB programs to help you overcome difficult programming challenges. It summarises the variety of different quadrature formulations that can be found by varying the degree of polynomials, the treatment of boundary conditions and employing regular or irregular grid points, to help you choose the correct method for solving practical problems. - Offers a clear explanation of both the theory and many applications of DQM to structural analyses - Discusses and illustrates reliable ways to apply multiple boundary conditions and develop reliable grid distributions - Supported by FORTRAN and MATLAB programs, including subroutines to compute grid distributions and weighting coefficients
Differential Quadrature and Its Application in Engineering

Author: Chang Shu
language: en
Publisher: Springer Science & Business Media
Release Date: 2000-01-14
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
Discrete Element Analysis Methods of Generic Differential Quadratures

Author: Chang-New Chen
language: en
Publisher: Springer Science & Business Media
Release Date: 2008-09-12
Following the advance in computer technology, the numerical technique has made signi?cant progress in the past decades. Among the major techniques available for numerically analyzing continuum mechanics problems, ?nite d- ference method is most early developed. It is di?cult to deal with cont- uum mechanics problems showing complex curvilinear geometries by using this method. The other method that can consistently discretize continuum mechanics problems showing arbitrarily complex geometries is ?nite element method. In addition, boundary element method is also a useful numerical method. In the past decade, the di?erential quadrature and generic di?erential quadraturesbaseddiscreteelementanalysismethodshavebeendevelopedand usedto solve various continuum mechanics problems. These methods have the same advantage as ?nite element method of consistently discretizing cont- uum mechanics problems having arbitrarily complex geometries. This book includes my research results obtained in developing the related novel discrete element analysis methods using both of the extended di?erential quadrature based spacial and temporal elements. It is attempted to introduce the dev- oped numerical techniques as applied to the solution of various continuum mechanics problems, systematically.