Differential Geometry Of Warped Product Manifolds And Submanifolds

Download Differential Geometry Of Warped Product Manifolds And Submanifolds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Geometry Of Warped Product Manifolds And Submanifolds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Differential Geometry Of Warped Product Manifolds And Submanifolds

A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry — except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds.The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's.The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century.The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers.
Differential Geometry of Warped Product Manifolds and Submanifolds

"A warped product manifold is a Riemannian or pseudo-Riemannian manifold whose metric tensor can be decomposed into a Cartesian product of the y geometry and the x geometry -- except that the x-part is warped, that is, it is rescaled by a scalar function of the other coordinates y. The notion of warped product manifolds plays very important roles not only in geometry but also in mathematical physics, especially in general relativity. In fact, many basic solutions of the Einstein field equations, including the Schwarzschild solution and the Robertson-Walker models, are warped product manifolds. The first part of this volume provides a self-contained and accessible introduction to the important subject of pseudo-Riemannian manifolds and submanifolds. The second part presents a detailed and up-to-date account on important results of warped product manifolds, including several important spacetimes such as Robertson-Walker's and Schwarzschild's. The famous John Nash's embedding theorem published in 1956 implies that every warped product manifold can be realized as a warped product submanifold in a suitable Euclidean space. The study of warped product submanifolds in various important ambient spaces from an extrinsic point of view was initiated by the author around the beginning of this century. The last part of this volume contains an extensive and comprehensive survey of numerous important results on the geometry of warped product submanifolds done during this century by many geometers."--Publisher's website.
Differential Geometry, Algebra, and Analysis

Author: Mohammad Hasan Shahid
language: en
Publisher: Springer Nature
Release Date: 2020-09-04
This book is a collection of selected research papers, some of which were presented at the International Conference on Differential Geometry, Algebra and Analysis (ICDGAA 2016), held at the Department of Mathematics, Jamia Millia Islamia, New Delhi, from 15–17 November 2016. It covers a wide range of topics—geometry of submanifolds, geometry of statistical submanifolds, ring theory, module theory, optimization theory, and approximation theory—which exhibit new ideas and methodologies for current research in differential geometry, algebra and analysis. Providing new results with rigorous proofs, this book is, therefore, of much interest to readers who wish to learn new techniques in these areas of mathematics.