Differential Forms In Algebraic Topology Graduate Texts In Mathematics

Download Differential Forms In Algebraic Topology Graduate Texts In Mathematics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Forms In Algebraic Topology Graduate Texts In Mathematics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Differential Forms in Algebraic Topology

Author: Raoul Bott
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
Developed from a first-year graduate course in algebraic topology, this text is an informal introduction to some of the main ideas of contemporary homotopy and cohomology theory. The materials are structured around four core areas: de Rham theory, the Cech-de Rham complex, spectral sequences, and characteristic classes. By using the de Rham theory of differential forms as a prototype of cohomology, the machineries of algebraic topology are made easier to assimilate. With its stress on concreteness, motivation, and readability, this book is equally suitable for self-study and as a one-semester course in topology.
Algebraic Topology

Author: Kevin P. Knudson
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2024-08-19
This book is ideal as an introduction to algebraic topology and applied algebraic topology featuring a streamlined approach including coverage of basic categorical notions, simplicial, cellular, and singular homology, persistent homology, cohomology groups, cup products, Poincare Duality, homotopy theory, and spectral sequences. The focus is on examples and computations, and there are many end of chapter exercises and extensive student projects.
Introduction to Geometry and Topology

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.