Differential Equations With Maple V

Download Differential Equations With Maple V PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Equations With Maple V book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Differential Equations with Maple V®

Differential Equations with Maple V provides an introduction and discussion of topics typically covered in an undergraduate course in ordinary differential equations as well as some supplementary topics such as Laplace transforms, Fourier series, and partial differential equations. It also illustrates how Maple V is used to enhance the study of differential equations not only by eliminating the computational difficulties, but also by overcoming the visual limitations associated with the solutions of differential equations. The book contains chapters that present differential equations and illustrate how Maple V can be used to solve some typical problems. The text covers topics on differential equations such as first-order ordinary differential equations, higher order differential equations, power series solutions of ordinary differential equations, the Laplace Transform, systems of ordinary differential equations, and Fourier Series and applications to partial differential equations. Applications of these topics are also provided. Engineers, computer scientists, physical scientists, mathematicians, business professionals, and students will find the book useful.
Solving Differential Equations with Maple V, Release 4

This comprehensive book helps students tap into the power of Maple®, thereby simplifying the computations and graphics that are often required in the practical use of mathematics. Numerous examples and exercises provide a thorough introduction to the basic Maple® commands that are needed to solve differential equations. Topics include: numerical algorithms, first order linear systems, homogeneous and nonhomogeneous equations, beats and resonance, Laplace Transforms, qualitative theory, nonlinear systems, and much more.