Differential Analysis In Infinite Dimensional Spaces

Download Differential Analysis In Infinite Dimensional Spaces PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Differential Analysis In Infinite Dimensional Spaces book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Complex Analysis on Infinite Dimensional Spaces

Infinite dimensional holomorphy is the study of holomorphic or analytic func tions over complex topological vector spaces. The terms in this description are easily stated and explained and allow the subject to project itself ini tially, and innocently, as a compact theory with well defined boundaries. However, a comprehensive study would include delving into, and interacting with, not only the obvious topics of topology, several complex variables theory and functional analysis but also, differential geometry, Jordan algebras, Lie groups, operator theory, logic, differential equations and fixed point theory. This diversity leads to a dynamic synthesis of ideas and to an appreciation of a remarkable feature of mathematics - its unity. Unity requires synthesis while synthesis leads to unity. It is necessary to stand back every so often, to take an overall look at one's subject and ask "How has it developed over the last ten, twenty, fifty years? Where is it going? What am I doing?" I was asking these questions during the spring of 1993 as I prepared a short course to be given at Universidade Federal do Rio de Janeiro during the following July. The abundance of suit able material made the selection of topics difficult. For some time I hesitated between two very different aspects of infinite dimensional holomorphy, the geometric-algebraic theory associated with bounded symmetric domains and Jordan triple systems and the topological theory which forms the subject of the present book.
An Introduction to Infinite-Dimensional Analysis

Author: Giuseppe Da Prato
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-08-25
Based on well-known lectures given at Scuola Normale Superiore in Pisa, this book introduces analysis in a separable Hilbert space of infinite dimension. It starts from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate basic stochastic dynamical systems and Markov semi-groups, paying attention to their long-time behavior.
Differential Analysis in Infinite Dimensional Spaces

Author: Kondagunta Sundaresan
language: en
Publisher: American Mathematical Soc.
Release Date: 1986
Focuses on developments made in the field of differential analysis in infinite dimensional spaces. This work covers a range of topics including gauge theories, polar subsets, approximation theory, group analysis of partial differential equations, inequalities and actions on infinite groups.