Difference Schemes With Operator Factors

Download Difference Schemes With Operator Factors PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Difference Schemes With Operator Factors book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Difference Schemes with Operator Factors

Author: A.A. Samarskii
language: en
Publisher: Springer Science & Business Media
Release Date: 2013-04-17
Two-and three-level difference schemes for discretisation in time, in conjunction with finite difference or finite element approximations with respect to the space variables, are often used to solve numerically non stationary problems of mathematical physics. In the theoretical analysis of difference schemes our basic attention is paid to the problem of sta bility of a difference solution (or well posedness of a difference scheme) with respect to small perturbations of the initial conditions and the right hand side. The theory of stability of difference schemes develops in various di rections. The most important results on this subject can be found in the book by A.A. Samarskii and A.V. Goolin [Samarskii and Goolin, 1973]. The survey papers of V. Thomee [Thomee, 1969, Thomee, 1990], A.V. Goolin and A.A. Samarskii [Goolin and Samarskii, 1976], E. Tad more [Tadmor, 1987] should also be mentioned here. The stability theory is a basis for the analysis of the convergence of an approximative solu tion to the exact solution, provided that the mesh width tends to zero. In this case the required estimate for the truncation error follows from consideration of the corresponding problem for it and from a priori es timates of stability with respect to the initial data and the right hand side. Putting it briefly, this means the known result that consistency and stability imply convergence.
Additive Operator-Difference Schemes

Author: Petr N. Vabishchevich
language: en
Publisher: Walter de Gruyter
Release Date: 2013-11-27
Applied mathematical modeling is concerned with solving unsteady problems. Splitting schemes are attributed to the transition from a complex problem to a chain of simpler problems. This book shows how to construct additive difference schemes (splitting schemes) to solve approximately unsteady multi-dimensional problems for PDEs. Two classes of schemes are highlighted: methods of splitting with respect to spatial variables (alternating direction methods) and schemes of splitting into physical processes. Also regionally additive schemes (domain decomposition methods) and unconditionally stable additive schemes of multi-component splitting are considered for evolutionary equations of first and second order as well as for systems of equations. The book is written for specialists in computational mathematics and mathematical modeling. All topics are presented in a clear and accessible manner.
Exact Finite-Difference Schemes

Author: Sergey Lemeshevsky
language: en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date: 2016-09-26
Exact Finite-Difference Schemes is a first overview of the topic also describing the state-of-the-art in this field of numerical analysis. Construction of exact difference schemes for various parabolic and elliptic partial differential equations are discussed, including vibrations and transport problems. After this, applications are discussed, such as the discretisation of ODEs and PDEs and numerical methods for stochastic differential equations. Contents: Basic notation Preliminary results Hyperbolic equations Parabolic equations Use of exact difference schemes to construct NSFD discretizations of differential equations Exact and truncated difference schemes for boundary-value problem Exact difference schemes for stochastic differential equations Numerical blow-up time Bibliography