Developments In The Theory Of Jacobi Forms

Download Developments In The Theory Of Jacobi Forms PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Developments In The Theory Of Jacobi Forms book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.
Automorphic Forms and Zeta Functions

This volume contains a valuable collection of articles presented at a conference on Automorphic Forms and Zeta Functions in memory of Tsuneo Arakawa, an eminent researcher in modular forms in several variables and zeta functions. The book begins with a review of his works, followed by 16 articles by experts in the fields including H Aoki, R Berndt, K Hashimoto, S Hayashida, Y Hironaka, H Katsurada, W Kohnen, A Krieg, A Murase, H Narita, T Oda, B Roberts, R Schmidt, R Schulze-Pillot, N Skoruppa, T Sugano, and D Zagier. A variety of topics in the theory of modular forms and zeta functions are covered: Theta series and the basis problems, Jacobi forms, automorphic forms on Sp(1, q), double zeta functions, special values of zeta and L -functions, many of which are closely related to Arakawa''s works. This collection of papers illustrates Arakawa''s contributions and the current trends in modular forms in several variables and related zeta functions. Contents: Tsuneo Arakawa and His Works; Estimate of the Dimensions of Hilbert Modular Forms by Means of Differential Operators (H Aoki); MarsdenOCoWeinstein Reduction, Orbits and Representations of the Jacobi Group (R Berndt); On Eisenstein Series of Degree Two for Squarefree Levels and the Genus Version of the Basis Problem I (S BAcherer); Double Zeta Values and Modular Forms (H Gangl et al.); Type Numbers and Linear Relations of Theta Series for Some General Orders of Quaternion Algebras (K-I Hashimoto); Skew-Holomorphic Jacobi Forms of Higher Degree (S Hayashida); A Hermitian Analog of the Schottky Form (M Hentschel & A Krieg); The Siegel Series and Spherical Functions on O (2 n) / (O (n) x O (n) ) (Y Hironaka & F Sato); KoecherOCoMaa Series for Real Analytic Siegel Eisenstein Series (T Ibukiyama & H Katsurada); A Short History on Investigation of the Special Values of Zeta and L -Functions of Totally Real Number Fields (T Ishii & T Oda); Genus Theta Series, Hecke Operators and the Basis Problem for Eisenstein Series (H Katsurada & R Schulze-Pillot); The Quadratic Mean of Automorphic L -Functions (W Kohnen et al.); Inner Product Formula for Kudla Lift (A Murase & T Sugano); On Certain Automorphic Forms of Sp (1, q ) (Arakawa''s Results and Recent Progress) (H-A Narita); On Modular Forms for the Paramodular Groups (B Roberts & R Schmidt); SL(2, Z)-Invariant Spaces Spanned by Modular Units (N-P Skoruppa & W Eholzer). Readership: Researchers and graduate students in number theory or representation theory as well as in mathematical physics or combinatorics."