Developments In Mathematical And Conceptual Physics

Download Developments In Mathematical And Conceptual Physics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Developments In Mathematical And Conceptual Physics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
New Trends in Mathematical Physics

Author: Vladas Sidoravicius
language: en
Publisher: Springer Science & Business Media
Release Date: 2009-08-31
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
Mathematics And The Natural Sciences: The Physical Singularity Of Life

This book identifies the organizing concepts of physical and biological phenomena by an analysis of the foundations of mathematics and physics. Our aim is to propose a dialog between different conceptual universes and thus to provide a unification of phenomena. The role of “order” and symmetries in the foundations of mathematics is linked to the main invariants and principles, among them the geodesic principle (a consequence of symmetries), which govern and confer unity to various physical theories. Moreover, an attempt is made to understand causal structures, a central element of physical intelligibility, in terms of both symmetries and symmetry breakings. A distinction between the principles of (conceptual) construction and of proofs, both in physics and in mathematics, guides most of the work.The importance of mathematical tools is also highlighted to clarify differences in the models for physics and biology that are proposed by continuous and discrete mathematics, such as computational simulations.Since biology is particularly complex and not as well understood at a theoretical level, we propose a “unification by concepts” which in any case should precede mathematization. This constitutes an outline for unification also based on highlighting conceptual differences, complex points of passage and technical irreducibilities of one field to another. Indeed, we suppose here a very common monist point of view, namely the view that living objects are “big bags of molecules”. The main question though is to understand which “theory” can help better understand these bags of molecules. They are, indeed, rather “singular”, from the physical point of view. Technically, we express this singularity through the concept of “extended criticality”, which provides a logical extension of the critical transitions that are known in physics. The presentation is mostly kept at an informal and conceptual level./a
Explorations in Mathematical Physics

Author: Don Koks
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-09-15
Have you ever wondered why the language of modern physics centres on geometry? Or how quantum operators and Dirac brackets work? What a convolution really is? What tensors are all about? Or what field theory and lagrangians are, and why gravity is described as curvature? This book takes you on a tour of the main ideas forming the language of modern mathematical physics. Here you will meet novel approaches to concepts such as determinants and geometry, wave function evolution, statistics, signal processing, and three-dimensional rotations. You will see how the accelerated frames of special relativity tell us about gravity. On the journey, you will discover how tensor notation relates to vector calculus, how differential geometry is built on intuitive concepts, and how variational calculus leads to field theory. You will meet quantum measurement theory, along with Green functions and the art of complex integration, and finally general relativity and cosmology. The book takes a fresh approach to tensor analysis built solely on the metric and vectors, with no need for one-forms. This gives a much more geometrical and intuitive insight into vector and tensor calculus, together with general relativity, than do traditional, more abstract methods. Don Koks is a physicist at the Defence Science and Technology Organisation in Adelaide, Australia. His doctorate in quantum cosmology was obtained from the Department of Physics and Mathematical Physics at Adelaide University. Prior work at the University of Auckland specialised in applied accelerator physics, along with pure and applied mathematics.