Development Of Lrfd Procedures For Bridge Pile Foundations In Iowa


Download Development Of Lrfd Procedures For Bridge Pile Foundations In Iowa PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Development Of Lrfd Procedures For Bridge Pile Foundations In Iowa book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Development of LRFD Procedures for Bridge Pile Foundations in Iowa


Development of LRFD Procedures for Bridge Pile Foundations in Iowa

Author:

language: en

Publisher:

Release Date: 2012


DOWNLOAD





This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control.

Development of LRFD Design Procedures for Bridge Piles in Iowa


Development of LRFD Design Procedures for Bridge Piles in Iowa

Author:

language: en

Publisher:

Release Date: 2011


DOWNLOAD





In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation Pile Load Test database. To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving, and at re-strikes were monitored using the Pile Driving Analyzer, following with the CAse Pile Wave Analysis Program analysis. The hammer blow counts were recorded for Wave Equation Analysis Program and dynamic formulas. Static load tests were performed and the pile capacities were determined based on the Davisson's criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Model Uncertainties in Foundation Design


Model Uncertainties in Foundation Design

Author: Chong Tang

language: en

Publisher: CRC Press

Release Date: 2021-03-16


DOWNLOAD





Model Uncertainties in Foundation Design is unique in the compilation of the largest and the most diverse load test databases to date, covering many foundation types (shallow foundations, spudcans, driven piles, drilled shafts, rock sockets and helical piles) and a wide range of ground conditions (soil to soft rock). All databases with names prefixed by NUS are available upon request. This book presents a comprehensive evaluation of the model factor mean (bias) and coefficient of variation (COV) for ultimate and serviceability limit state based on these databases. These statistics can be used directly for AASHTO LRFD calibration. Besides load test databases, performance databases for other geo-structures and their model factor statistics are provided. Based on this extensive literature survey, a practical three-tier scheme for classifying the model uncertainty of geo-structures according to the model factor mean and COV is proposed. This empirically grounded scheme can underpin the calibration of resistance factors as a function of the degree of understanding – a concept already adopted in the Canadian Highway Bridge Design Code and being considered for the new draft for Eurocode 7 Part 1 (EN 1997-1:202x). The helical pile research in Chapter 7 was recognised by the 2020 ASCE Norman Medal.