Development And Utilization Of Composite Honeycomb And Solid Laminate Reference Standards For Aircraft Inspections


Download Development And Utilization Of Composite Honeycomb And Solid Laminate Reference Standards For Aircraft Inspections PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Development And Utilization Of Composite Honeycomb And Solid Laminate Reference Standards For Aircraft Inspections book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Development and Utilization of Composite Honeycomb and Solid Laminate Reference Standards for Aircraft Inspections


Development and Utilization of Composite Honeycomb and Solid Laminate Reference Standards for Aircraft Inspections

Author: Dennis Patrick Roach

language: en

Publisher:

Release Date: 2004


DOWNLOAD





The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, developed a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, was inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a set of minimum honeycomb NDI reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the full range of honeycomb construction scenarios found on commercial aircraft. In the solid composite laminate arena, G11 Phenolic was identified as a good generic solid laminate reference standard material. Testing determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic NDI reference standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections.

Development of Composite Honeycomb and Solid Laminate Reference Standards to Aid Aircraft Inspections


Development of Composite Honeycomb and Solid Laminate Reference Standards to Aid Aircraft Inspections

Author:

language: en

Publisher:

Release Date: 1999


DOWNLOAD





The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee (CACRC), is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, were inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a prototype set of minimum honeycomb reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the fill range of honeycomb construction scenarios. Current tasks are aimed at optimizing the methods used to engineer realistic flaws into the specimens. In the solid composite laminate arena, we have identified what appears to be an excellent candidate, G11 Phenolic, as a generic solid laminate reference standard material. Testing to date has determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic prototype standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections. Additional testing and industry review activities are underway to complete the validation of this material.

Bonded Joints and Repairs to Composite Airframe Structures


Bonded Joints and Repairs to Composite Airframe Structures

Author: Chun Hui Wang

language: en

Publisher: Academic Press

Release Date: 2015-10-10


DOWNLOAD





Bonded Joints and Repairs to Composite Airframe Structures is a single-source reference on the state-of-the-art in this rapidly growing area. It provides a thorough analysis of both internal and external joints and repairs, as well as discussions on damage tolerance, non-destructive inspection, self-healing repairs, and other essential information not only on the joints and repairs themselves, but critically, on how they differ from bonds and repairs to metallic aircraft. Authors Wang and Duong bring a valuable combination of academic research and industry expertise to the book, drawing on their cutting-edge composite technology experience, including analytic and computational leadership of damage and repair planning for the Boeing 787. Intended for graduate students, engineers, and scientists working on the subject in aerospace industry, government agencies, research labs, and academia, the book is an important addition to the limited literature in the field. - Offers rare coverage of composite joints and repairs to composite structures, focusing on the state of the art in analysis - Combines the academic, government, and industry expertise of the authors, providing research findings in the context of current and future applications - Covers internal and external joints and repairs, as well as damage tolerance, non-destructive inspection, and self-healing repairs - Ideal for graduate students, engineers, and scientists working in the aerospace industry, government agencies, research labs, and academia