Developing A Keyword Extractor And Document Classifier Emerging Research And Opportunities

Download Developing A Keyword Extractor And Document Classifier Emerging Research And Opportunities PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Developing A Keyword Extractor And Document Classifier Emerging Research And Opportunities book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Developing a Keyword Extractor and Document Classifier: Emerging Research and Opportunities

The main problems that prevent fast and high-quality document processing in electronic document management systems are insufficient and unstructured information, information redundancy, and the presence of large amounts of undesirable user information. The human factor has a significant impact on the efficiency of document search. An average user is not aware of the advanced option of a query language and uses typical queries. Development of a specialized software toolkit intended for information systems and electronic document management systems can be an effective solution of the tasks listed above. Such toolkits should be based on the means and methods of automatic keyword extraction and text classification. The categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last 10 years due to the increased availability of documents in digital form and the ensuing need to organize them. Thus, research on keyword extraction, advancements in the field, and possible future solutions is of great importance in current times. Developing a Keyword Extractor and Document Classifier: Emerging Research and Opportunities presents an information extraction mechanism that can process many kinds of inputs, realize the type of text, and understand the percentage of the keywords that has to be stored. This mechanism then supports information extraction and information categorization mechanisms. This module is used to support a text summarization mechanism, which leads—with the help of the keyword extraction module—to text categorization. It employs lexical and information retrieval techniques to extract phrases from the document text that are likely to characterize it and determines the category of the retrieved text to present a summary to the users. This book is ideal for practitioners, stakeholders, researchers, academicians, and students who are interested in the development of a new keyword extractor and document classifier method.
New Opportunities for Sentiment Analysis and Information Processing

Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Applications of Big Data in Large- and Small-Scale Systems

With new technologies, such as computer vision, internet of things, mobile computing, e-governance and e-commerce, and wide applications of social media, organizations generate a huge volume of data and at a much faster rate than several years ago. Big data in large-/small-scale systems, characterized by high volume, diversity, and velocity, increasingly drives decision making and is changing the landscape of business intelligence. From governments to private organizations, from communities to individuals, all areas are being affected by this shift. There is a high demand for big data analytics that offer insights for computing efficiency, knowledge discovery, problem solving, and event prediction. To handle this demand and this increase in big data, there needs to be research on innovative and optimized machine learning algorithms in both large- and small-scale systems. Applications of Big Data in Large- and Small-Scale Systems includes state-of-the-art research findings on the latest development, up-to-date issues, and challenges in the field of big data and presents the latest innovative and intelligent applications related to big data. This book encompasses big data in various multidisciplinary fields from the medical field to agriculture, business research, and smart cities. While highlighting topics including machine learning, cloud computing, data visualization, and more, this book is a valuable reference tool for computer scientists, data scientists and analysts, engineers, practitioners, stakeholders, researchers, academicians, and students interested in the versatile and innovative use of big data in both large-scale and small-scale systems.