Deterministic Optimal Control

Download Deterministic Optimal Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deterministic Optimal Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deterministic and Stochastic Optimal Control

Author: Wendell H. Fleming
language: en
Publisher: Springer Science & Business Media
Release Date: 2012-12-06
This book may be regarded as consisting of two parts. In Chapters I-IV we pre sent what we regard as essential topics in an introduction to deterministic optimal control theory. This material has been used by the authors for one semester graduate-level courses at Brown University and the University of Kentucky. The simplest problem in calculus of variations is taken as the point of departure, in Chapter I. Chapters II, III, and IV deal with necessary conditions for an opti mum, existence and regularity theorems for optimal controls, and the method of dynamic programming. The beginning reader may find it useful first to learn the main results, corollaries, and examples. These tend to be found in the earlier parts of each chapter. We have deliberately postponed some difficult technical proofs to later parts of these chapters. In the second part of the book we give an introduction to stochastic optimal control for Markov diffusion processes. Our treatment follows the dynamic pro gramming method, and depends on the intimate relationship between second order partial differential equations of parabolic type and stochastic differential equations. This relationship is reviewed in Chapter V, which may be read inde pendently of Chapters I-IV. Chapter VI is based to a considerable extent on the authors' work in stochastic control since 1961. It also includes two other topics important for applications, namely, the solution to the stochastic linear regulator and the separation principle.
Deterministic Optimal Control

This textbook is intended for physics students at the senior and graduate level. The first chapter employs Huygens' theory of wavefronts and wavelets to derive Hamilton's equations and the Hamilton-Jacobi equation. The final section presents a step-by-step precedure for the quanitzation of a Hamiltonian system. The remarkable congruence between particle dynaics and wave packets is shown. The second chapter presents sufficiency conditions for the standard case, broken, and singular extremals. Chapter III presents four schemes that can yield formal integrals of of Hamilton's equations- Killing's, Noether's, Poisson's, and Jacobi's. Chapter IV discusses iterative, numerical algorithms that converge to extremals. Three discontinuous problems are solved in Chapter V - refraction, jump discontinuities specified for state variables, and inequality contrainsts on state variables. The book contains many exercises and examples, in particular the geodesics of a Riemannian manifold.
Deterministic and Stochastic Optimal Control and Inverse Problems

Inverse problems of identifying parameters and initial/boundary conditions in deterministic and stochastic partial differential equations constitute a vibrant and emerging research area that has found numerous applications. A related problem of paramount importance is the optimal control problem for stochastic differential equations. This edited volume comprises invited contributions from world-renowned researchers in the subject of control and inverse problems. There are several contributions on optimal control and inverse problems covering different aspects of the theory, numerical methods, and applications. Besides a unified presentation of the most recent and relevant developments, this volume also presents some survey articles to make the material self-contained. To maintain the highest level of scientific quality, all manuscripts have been thoroughly reviewed.