Detection Of Abrupt Changes

Download Detection Of Abrupt Changes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Detection Of Abrupt Changes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Detection of Abrupt Changes

Presents mathematical tools and techniques for solving change detection problems in wide domains like signal processing, controlled systems and monitoring. The book covers a wide class of stochastic processes, including scalar independent observations and multidimensional dependent ARMA.
Information Visualization

Author: Chaomei Chen
language: en
Publisher: Springer Science & Business Media
Release Date: 2006-05-23
Information visualization is not only about creating graphical displays of complex and latent information structures. It also contributes to a broader range of cognitive, social, and collaborative activities. This is the first book to examine information visualization from this perspective. This 2nd edition continues the unique and ambitious quest for setting information visualization and virtual environments in a unifying framework. It pays special attention to the advances made over the last 5 years and potentially fruitful directions to pursue. It is particularly updated to meet the need for practitioners. The book is a valuable source for researchers and graduate students.
Sequential Analysis

Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detection both in decision-theoretic (Bayesian) and non-decision-theoretic (non-Bayesian) contexts. The authors not only emphasize traditional binary hypotheses but also substantially more difficult multiple decision problems. They address scenarios with simple hypotheses and more realistic cases of two and finitely many composite hypotheses. The book primarily focuses on practical discrete-time models, with certain continuous-time models also examined when general results can be obtained very similarly in both cases. It treats both conventional i.i.d. and general non-i.i.d. stochastic models in detail, including Markov, hidden Markov, state-space, regression, and autoregression models. Rigorous proofs are given for the most important results. Written by leading authorities in the field, this book covers the theoretical developments and applications of sequential hypothesis testing and sequential quickest changepoint detection in a wide range of engineering and environmental domains. It explains how the theoretical aspects influence the hypothesis testing and changepoint detection problems as well as the design of algorithms.