Designing Socs With Configured Cores

Download Designing Socs With Configured Cores PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Designing Socs With Configured Cores book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Designing SOCs with Configured Cores

Microprocessor cores used for SOC design are the direct descendents of Intel's original 4004 microprocessor. Just as packaged microprocessor ICs vary widely in their attributes, so do microprocessors packaged as IP cores. However, SOC designers still compare and select processor cores the way they previously compared and selected packaged microprocessor ICs. The big problem with this selection method is that it assumes that the laws of the microprocessor universe have remained unchanged for decades. This assumption is no longer valid.Processor cores for SOC designs can be far more plastic than microprocessor ICs for board-level system designs. Shaping these cores for specific applications produces much better processor efficiency and much lower system clock rates. Together, Tensilica's Xtensa and Diamond processor cores constitute a family of software-compatible microprocessors covering an extremely wide performance range from simple control processors, to DSPs, to 3-way superscalar processors. Yet all of these processors use the same software-development tools so that programmers familiar with one processor in the family can easily switch to another.This book emphasizes a processor-centric MPSOC (multiple-processor SOC) design style shaped by the realities of the 21st-century and nanometer silicon. It advocates the assignment of tasks to firmware-controlled processors whenever possible to maximize SOC flexibility, cut power dissipation, reduce the size and number of hand-built logic blocks, shrink the associated verification effort, and minimize the overall design risk.· An essential, no-nonsense guide to the design of 21st-century mega-gate SOCs using nanometer silicon.· Discusses today's key issues affecting SOC design, based on author's decades of personal experience in developing large digital systems as a design engineer while working at Hewlett-Packard's Desktop Computer Division and at EDA workstation pioneer Cadnetix, and covering such topics as an award-winning technology journalist and editor-in-chief for EDN magazine and the Microprocessor Report.· Explores conventionally accepted boundaries and perceived limits of processor-based system design and then explodes these artificial constraints through a fresh outlook on and discussion of the special abilities of processor cores designed specifically for SOC design.· Thorough exploration of the evolution of processors and processor cores used for ASIC and SOC design with a look at where the industry has come from, and where it's going.· Easy-to-understand explanations of the capabilities of configurable and extensible processor cores through a detailed examination of Tensilica's configurable, extensible Xtensa processor core and six pre-configured Diamond cores.· The most comprehensive assessment available of the practical aspects of configuring and using multiple processor cores to achieve very difficult and ambitious SOC price, performance, and power design goals.
Essential Issues in SOC Design

Author: Youn-Long Steve Lin
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-05-31
This book originated from a workshop held at the DATE 2005 conference, namely Designing Complex SOCs. State-of-the-art in issues related to System-on-Chip (SoC) design by leading experts in the fields, covers IP development, verification, integration, chip implementation, testing and software. SOC design is fast becoming the key area of focus that engineers and researchers from the Electronic Design Automation field are focusing on in their quest to further develop Integrated Circuit technology. The more systems and even networks that we can integrate on one piece of silicon, the faster, cheaper, more powerful and efficient the technology will become. Essential Issues in SOC Design contains valuable academic and industrial examples for those involved with the design of complex SOCs, all contributors are selected from a region of the world that is generally known to lead the "SOC-Revolution", namely Asia.
Embedded Systems Handbook 2-Volume Set

During the past few years there has been an dramatic upsurge in research and development, implementations of new technologies, and deployments of actual solutions and technologies in the diverse application areas of embedded systems. These areas include automotive electronics, industrial automated systems, and building automation and control. Comprising 48 chapters and the contributions of 74 leading experts from industry and academia, the Embedded Systems Handbook, Second Edition presents a comprehensive view of embedded systems: their design, verification, networking, and applications. The contributors, directly involved in the creation and evolution of the ideas and technologies presented, offer tutorials, research surveys, and technology overviews, exploring new developments, deployments, and trends. To accommodate the tremendous growth in the field, the handbook is now divided into two volumes. New in This Edition: Processors for embedded systems Processor-centric architecture description languages Networked embedded systems in the automotive and industrial automation fields Wireless embedded systems Embedded Systems Design and Verification Volume I of the handbook is divided into three sections. It begins with a brief introduction to embedded systems design and verification. The book then provides a comprehensive overview of embedded processors and various aspects of system-on-chip and FPGA, as well as solutions to design challenges. The final section explores power-aware embedded computing, design issues specific to secure embedded systems, and web services for embedded devices. Networked Embedded Systems Volume II focuses on selected application areas of networked embedded systems. It covers automotive field, industrial automation, building automation, and wireless sensor networks. This volume highlights implementations in fast-evolving areas which have not received proper coverage in other publications. Reflecting the unique functional requirements of different application areas, the contributors discuss inter-node communication aspects in the context of specific applications of networked embedded systems.