Design Of Surface Acoustic Wave Sensors With Nanomaterial Sensing Layers

Download Design Of Surface Acoustic Wave Sensors With Nanomaterial Sensing Layers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design Of Surface Acoustic Wave Sensors With Nanomaterial Sensing Layers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Design of Surface Acoustic Wave Sensors with Nanomaterial Sensing Layers

ABSTRACT: Surface acoustic wave (SAW) sensors detect chemical and biological species by monitoring the shifts in frequency of surface acoustic waves generated on piezoelectric substrates. Incorporation of nanomaterials having increased surface area as sensing layer have been effective in improving the sensitivity as well as miniaturization of SAW sensors. Selectivity, sensitivity and speed of response are the three primary aspects for any type of sensor. This dissertation focuses on design and development of SAW devices with novel transducer configurations employing nanomaterial sensing layers for enhanced sensing, improved selectivity, and speed of response. The sensing mechanism in these SAW sensors is a complex phenomenon involving interactions across several different length and time scales. Surface acoustic wave propagation at the macro-scale is influenced by several kinetic phenomena occurring at the molecular scale such as adsorption, diffusion, reaction, and desorption which in turn depend on the properties of nanomaterials. This suggests the requirement of a multi-scale model to effectively understand and manipulate the interactions occurring at different length scales, thereby improving sensor design. Sensor response modeling at multiple time and length scales forms part of this research, which includes perturbation theories, and simulation techniques from finite element methods to molecular-level simulations for interpreting the response of these surface acoustic wave chemical and biosensors utilizing alloy nanostructures as sensing layers. Molecular modeling of sensing layers such as transition metal alloy nanoclusters and nanowires is carried out to gain insights into their thermodynamic, structural, mechanical and dynamic properties. Finite element technique is used to understand the acoustic wave propagation at the macroscale for sensing devices operating at MHz frequencies and with novel transducer designs. The findings of this research provide insights into the design of efficient surface acoustic wave sensors. It is expected that this work will lead to a better understanding of surface acoustic wave devices with novel transducer configurations and employing nanomaterial sensing layers.
Nanomanufacturing and Nanomaterials Design

Nanomanufacturing includes bottom-up or top-down techniques, each of which gives an advanced, reliable, scaled-up, and economical methods in the production of nanomaterials. The text discusses fundamental concepts, advanced topics, and applications of nanomanufacturing in a comprehensive manner. Features Discussion of the design and fabrication of nano- and micro-devices in a comprehensive manner. Covers nanofabrication techniques for photovoltaics applications. Lists constitutive modelling and simulation of multifunctional nanomaterials. Introduces nanomanufacturing of nanorobots and their industrial applications. Presents nanomanufacturing of a high-performance piezoelectric nanogenerator for energy harvesting. Important topics include nanomanufacturing of high-performance piezoelectric nanogenerators for energy harvesting, nanosensor, nanorobots, nanomedicine, nano diagnostic tools, 3D nano printing, additive nanomanufacturing of functional materials for human‐integrated smart wearables, and nanofabrication techniques. Nanomanufacturing and Nanomaterials Design covers the latest applications of nanomanufacturing for a better understanding of the concepts. The text provides scientific and technological insights on novel routes of design and fabrication of few-layered nanostructures and their heterostructures based on a variety of advanced materials. It will be a valuable resource for senior undergraduate, graduate students and researchers in the fields of mechanical, manufacturing, industrial, production engineering and materials science.
Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices

Author: Marco G. Beghi
language: en
Publisher: BoD – Books on Demand
Release Date: 2013-08-28
Acoustics is a mature field which enjoys a never ending youth. New developments are induced by either the search for a better understanding, or by technological innovations. Micro-fabrication techniques introduced a whole new class of microdevices, which exploit acoustic waves for various tasks, and in particular for information processing and for sensing purposes. Performance improvements are achievable by better modelling tools, able to deal with more complex configurations, and by more refined techniques of fabrication and of integration in technological systems, like wireless communications. Several chapters of this book deal with modelling and fabrication techniques for microdevices, including unconventional phenomena and configurations. But this is far from exhausting the research lines in acoustics. Theoretical analyses and modelling techniques are presented, for phenomena ranging from the detection of cracks to the acoustics of the oceans. Measurement methods are also discussed, which probe by acoustic waves the properties of widely different systems.