Design Of High Performance Microprocessor Circuits Pdf

Download Design Of High Performance Microprocessor Circuits Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design Of High Performance Microprocessor Circuits Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Design of High-Performance Microprocessor Circuits

The authors present readers with a compelling, one-stop, advanced system perspective on the intrinsic issues of digital system design. This invaluable reference prepares readers to meet the emerging challenges of the device and circuit issues associated with deep submicron technology. It incorporates future trends with practical, contemporary methodologies.
Integrated Circuit and System Design

WelcometotheproceedingsofPATMOS2004,thefourteenthinaseriesofint- national workshops. PATMOS 2004 was organized by the University of Patras with technical co-sponsorship from the IEEE Circuits and Systems Society. Over the years, the PATMOS meeting has evolved into an important - ropean event, where industry and academia meet to discuss power and timing aspects in modern integrated circuit and system design. PATMOS provides a forum for researchers to discuss and investigate the emerging challenges in - sign methodologies and tools required to develop the upcoming generations of integrated circuits and systems. We realized this vision this year by providing a technical program that contained state-of-the-art technical contributions, a keynote speech, three invited talks and two embedded tutorials. The technical program focused on timing, performance and power consumption, as well as architectural aspects, with particular emphasis on modelling, design, charac- rization, analysis and optimization in the nanometer era. This year a record 152 contributions were received to be considered for p- sible presentation at PATMOS. Despite the choice for an intense three-day m- ting, only 51 lecture papers and 34 poster papers could be accommodated in the single-track technical program. The Technical Program Committee, with the - sistance of additional expert reviewers, selected the 85 papers to be presented at PATMOS and organized them into 13 technical sessions. As was the case with the PATMOS workshops, the review process was anonymous, full papers were required, and several reviews were received per manuscript.
Closing the Gap Between ASIC & Custom

Author: David Chinnery
language: en
Publisher: Springer Science & Business Media
Release Date: 2007-05-08
by Kurt Keutzer Those looking for a quick overview of the book should fast-forward to the Introduction in Chapter 1. What follows is a personal account of the creation of this book. The challenge from Earl Killian, formerly an architect of the MIPS processors and at that time Chief Architect at Tensilica, was to explain the significant performance gap between ASICs and custom circuits designed in the same process generation. The relevance of the challenge was amplified shortly thereafter by Andy Bechtolsheim, founder of Sun Microsystems and ubiquitous investor in the EDA industry. At a dinner talk at the 1999 International Symposium on Physical Design, Andy stated that the greatest near-term opportunity in CAD was to develop tools to bring the performance of ASIC circuits closer to that of custom designs. There seemed to be some synchronicity that two individuals so different in concern and character would be pre-occupied with the same problem. Intrigued by Earl and Andy’s comments, the game was afoot. Earl Killian and other veterans of microprocessor design were helpful with clues as to the sources of the performance discrepancy: layout, circuit design, clocking methodology, and dynamic logic. I soon realized that I needed help in tracking down clues. Only at a wonderful institution like the University of California at Berkeley could I so easily commandeer an ab- bodied graduate student like David Chinnery with a knowledge of architecture, circuits, computer-aided design and algorithms.