Design Of Active Key Interfaces In Fuel Cells


Download Design Of Active Key Interfaces In Fuel Cells PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design Of Active Key Interfaces In Fuel Cells book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Design of Active Key Interfaces in Fuel Cells


Design of Active Key Interfaces in Fuel Cells

Author: Toshiyuki Mori

language: en

Publisher: Springer Nature

Release Date: 2025-01-29


DOWNLOAD





This book focuses on the multidisciplinary teamwork for the design of key interfaces in fuel cell devices. It covers the fabrication, modelling, and operando-microanalysis sections in each chapter. Also, each chapter in the book consists of the introduction of basic theory, representative experimental results, and future prospects in each field. The book is an edited volume, intended to serve as an introductory textbook in multidisciplinary research work for the design and development of fuel cells. To fully enjoy the multidisciplinary research activities in fuel cell field, the beginners need to learn the basic knowledge and experimental data in each field. Compared with the published introductory textbooks in the field of science and engineering of fuel cells, this book has the following advantages. Firstly, it is an introductory textbook of multidisciplinary work for the design and development field of intermediate temperature (IT) solid oxide fuel cells (IT-SOFCs) and high-temperature polymer electrolyte fuel cells (HT-PEFCs) . And at the same time, this book is convenient for practical research implementation in R & D of those IT-SOFC and HT-PEFC devices. Secondly recent research topics with sufficient references are included in each chapter. Scientists and engineers in the fuel cell field will obtain useful knowledge in critical review chapters in the fabrication, modeling, and operando-microanalysis fields. Finally experimental results are closely combined with the cutting edge of scientific research work in the IT-SOFC and HT-PEFC materials and devices field. For all these reasons, this book is a useful start-up in multidisciplinary work for R & D of IT-SOFC and HT-PEFC devices.

FOCAPD-19/Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, July 14 - 18, 2019


FOCAPD-19/Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, July 14 - 18, 2019

Author: Salvador Garcia Munoz

language: en

Publisher: Elsevier

Release Date: 2019-07-09


DOWNLOAD





FOCAPD-19/Proceedings of the 9th International Conference on Foundations of Computer-Aided Process Design, July 14 - 18, 2019, compiles the presentations given at the Ninth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2019. It highlights the meetings held at this event that brings together researchers, educators and practitioners to identify new challenges and opportunities for process and product design. - Combines presentations from the Ninth International Conference on Foundations of Computer-Aided Process Design, FOCAPD-2019

Surface and Interface Characterization of Thin Film Energy Devices


Surface and Interface Characterization of Thin Film Energy Devices

Author: Wŏn-yong Yi

language: en

Publisher: Stanford University

Release Date: 2010


DOWNLOAD





Thin film devices for energy conversion have become a vital area of research to achieve high performance with low cost. As the surface-to-volume ratio becomes significant, the fundamental physics of the surface and interface microstructures and the reaction mechanisms are important to developing such energy devices or processes. My Ph.D. research is thus focus on surface and interface characterization of energy materials for thin film devices with engineered components fabricated by novel technologies. The first part of this dissertation discusses how surface microstructures influence fuel cell performance. According to the high resolution characterization of surface grain boundaries in solid oxide ion conductors, oxygen vacancy segregation at grain boundaries was observed, indicating that the grain boundaries can be more active sites for oxygen incorporation into the electrolyte. This preferred surface reaction at grain boundaries was verified by AC impedance spectroscopy. In addition, using atomic force microscopy, the local rearrangement of charged species on the oxide surface was investigated as a function of time and temperature to quantitatively analyze the diffusivity of oxygen vacancies on the surface. The second part discusses investigation of quantum confined structures that was aimed at contributing to the development of new solar cell architectures. The electronic properties of quantum confined structures, fabricated by atomic layer deposition (ALD), were characterized by scanning tunneling microscopy. In particular, the band gap of lead sulfide quantum well was tuned as a function of well thickness and potential barrier height. In addition, various nano-patterning techniques were developed to fabricate higher-order quantum confined structures, including area-selective ALD.