Design Of A Non Pll Grid Forming Inverter For Smooth Microgrid Transition Operation Preprint

Download Design Of A Non Pll Grid Forming Inverter For Smooth Microgrid Transition Operation Preprint PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design Of A Non Pll Grid Forming Inverter For Smooth Microgrid Transition Operation Preprint book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Design of a Non-PLL Grid-Forming Inverter for Smooth Microgrid Transition Operation

This paper develops a controller for a grid-forming (GFM) inverter that is capable of operating as either a GFM or grid-feeding source that can improve the operation of a microgrid during on-off grid transitions through use of a novel synchronization approach. Furthermore, this controller avoids use of a phase-locked loop (PLL) and the inverter is able to synchronize with the grid with self-generated voltage and frequency. This prevents the inverter from replicating any grid voltage disturbances in its output - a key disadvantage of many grid-connected inverters that use a PLL. To enable fast synchronization, active synchronization control is adopted both during inverter start-up and microgrid reconnection operation and a method of coordinating synchronization of the inverter with a microgrid controller and grid interconnection circuit breaker is presented. Simulation results for multiple microgrid transition operations and unplanned islanding events demonstrate that the developed non-PLL grid-connected GFM inverter controller and synchronization method are effective in synchronizing the inverter and microgrid to the grid, avoiding phase jump during microgrid transition operation, and improving microgrid islanding transients versus a traditional configuration.
Design Power Control Strategies of Grid-Forming Inverters for Microgrid Application: Preprint

This paper compares two control schemes in the application control layer of a non-PLL grid-forming (GFM) inverter to gain the insights and understanding of how the two schemes affect the dynamic responses of the GFM inverters and the transition operation of microgrids. Both schemes can achieve smooth microgrid transition operation and power tracking, however, the first scheme expects to exhibit more transients due to the feedforward of the inverse dynamic model of the output filter. Simulation results show that both control schemes achieve successful transition operation with smooth transients, and the second control scheme exhibits slightly better transients in the system frequency during islanding operation and the first one has slightly superior transients in the system frequency during reconnection operation. The power tracking performance in the grid-connected mode is evaluated, which shows that the first scheme has better active power tracking and the second one has better reactive power tracking. The analysis and results are useful to develop reliable control schemes for non-PLL GFM inverters because more and more inverters will work as non-PLL grid-forming sources in the future grids due to better stability and reliability.