Design Modeling And Characterization Of Bio Nanorobotic Systems


Download Design Modeling And Characterization Of Bio Nanorobotic Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design Modeling And Characterization Of Bio Nanorobotic Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Design, Modeling and Characterization of Bio-Nanorobotic Systems


Design, Modeling and Characterization of Bio-Nanorobotic Systems

Author: Mustapha Hamdi

language: en

Publisher: Springer Science & Business Media

Release Date: 2010-10-06


DOWNLOAD





Nanorobots represent a nanoscale device where proteins such as DNA, carbon nanotubes could act as motors, mechanical joints, transmission elements, or sensors. When these different components were assembled together they can form nanorobots with multi-degree-of-freedom, able to apply forces and manipulate objects in the nanoscale world. Design, Modeling and Characterization of Bio-Nanorobotic Systems investigates the design, assembly, simulation, and prototyping of biological and artificial molecular structures with the goal of implementing their internal nanoscale movements within nanorobotic systems in an optimized manner.

Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture


Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture

Author: Mingyang Xie

language: en

Publisher: CRC Press

Release Date: 2023-06-02


DOWNLOAD





Autonomous Positioning of Piezoactuated Mechanism for Biological Cell Puncture gives a systematic and almost self-contained description of the many facets of advanced design, optimization, modeling, system identification, and advanced control techniques for positioning of the cell puncture mechanism with a piezoelectric actuator in micro/nanorobotics systems. To achieve biomedical applications, reliability design, modeling, and precision control are essential for developing engineering systems. With the advances in mechanical design, dynamic modeling, system identification, and control techniques, it is possible to expand the advancements in reliability design, precision control, and quick actuation of micro/nanomanipulation systems to the robot’s applications at the micro- and nanoscales, especially for biomedical applications. This book unifies existing and emerging techniques concerning advanced design, modeling, and advanced control methodologies in micropuncture of biological cells using piezoelectric actuators with their practical biomedical applications. The book is an essential resource for researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts. KEY FEATURES • Provides a series of latest results in, including but not limited to, design, modeling, and control of micro/nanomanipulation systems utilizing piezoelectric actuators • Gives recent advances of theory, technological aspects, and applications of advanced modeling, control, and actuation methodologies in cell engineering applications • Presents simulation and experimental results to reflect the micro/nano manipulation practice and validate the performances of the developed design, analysis, and synthesis approaches

Polymeric Nanomaterials in Nanotherapeutics


Polymeric Nanomaterials in Nanotherapeutics

Author:

language: en

Publisher: Elsevier

Release Date: 2018-10-26


DOWNLOAD





Polymeric Nanomaterials in Nanotherapeutics describes how polymeric nanosensors and nanorobotics are used for biomedical instrumentation, surgery, diagnosis and targeted drug delivery for cancer, pharmacokinetics, monitoring of diabetes and healthcare. Key areas of coverage include drug administration and formulations for targeted delivery and release of active agents (drug molecules) to non-healthy tissues and cells. The book demonstrates how these are applied to dental work, wound healing, cancer, cardiovascular diseases, neurodegenerative disorders, infectious diseases, chronic inflammatory diseases, metabolic diseases, and more. Methods of administration discussed include oral, dental, topical and transdermal, pulmonary and nasal, ocular, vaginal, and brain drug delivery and targeting. Drug delivery topics treated in several subchapters includes materials for active targeting and cases study of polymeric nanomaterials in clinical trials. The toxicity and regulatory status of therapeutic polymeric nanomaterials are also examined. The book gives a broad perspective on the topic for researchers, postgraduate students and professionals in the biomaterials, biotechnology, and biomedical fields. - Shows how the properties of polymeric nanomaterials can be used to create more efficient medical treatments/therapies - Demonstrates the potential and range of applications of polymeric nanomaterials in disease prevention, diagnosis, drug development, and for improving treatment outcomes - Accurately explains how nanotherapeutics can help in solving problems in the field through the latest technologies and formulations