Design And Control Of Supernumerary Robotic Limbs

Download Design And Control Of Supernumerary Robotic Limbs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Design And Control Of Supernumerary Robotic Limbs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Design and Control of Supernumerary Robotic Limbs

Humans possess the remarkable ability to control their four natural limbs in a voluntary, accurate and independent manner. The simultaneous use of two or more limbs allows humans to learn and robustly perform a wide range of complex tasks. Since the use of multiple limbs enables humans to master advanced motor skills, it would be interesting to study whether having additional limbs would enable users to expand their skill set beyond its natural limits. Inspired by this vision, we propose a new form of human augmentation: a wearable robot that augments its user by providing him with an additional set of robotic limbs. We named this new device Supernumerary Robotic Limbs (SRL). However, humans have never had the possibility to control additional, powered limbs besides their natural arms and legs. The main theme of this thesis, besides realizing a prototype of the robot and proving its usefulness in realworld tasks, is demonstrating that humans can voluntarily control additional limbs as if they were a part of their own body. We realized a lightweight (3.5 kg), comfortable prototype of the SRL that can be easily worn by an unassisted user. Two robotic limbs can assist the user in both manufacturing and locomotion tasks. We created control strategies that take advantage of the independence of the robotic limbs, enabling them to provide optimal assistance in specific tasks such as weight support, body stabilization, using powered tools, sitting/standing and dynamic walking. Finally, we developed an EMG-based control interface that enables users to voluntarily control the motion of the robotic limbs, without interfering with the posture of the rest of the body. The new augmentation technology presented in this thesis opens up new possibilities in the field of wearable robotics. The voluntary control of additional robotic limbs falls within the range of motor skills that humans can learn, and enables the acquisition of a new set of complex skills that would not be achievable using only the natural body..
Augmenting Human Manipulation Abilities with Supernumerary Robotic Limbs

This book offers a timely report on an emerging topic in the field of wearable assistive technology: the design and development of robotic extra fingers. After a concise review of the state of the art and a description of earlier prototypes, it discusses the authors’ efforts to address issues such as portability and wearability of the devices, including strategies to reduce fatigue and to integrate the motion of the extra fingers with that of the human hand. The book also explores optimized control algorithms and the design of wearable sensorimotor interfaces, and presents a set of tests carried out on healthy subjects and chronic stroke patients. Merging concepts from robotics, biomechanics, human factors and control theory and offering an overview of supernumerary robotic fingers, including the challenges, this book will inspire researchers involved in the development of wearable robotic devices and interfaces based on the principles of wearability, safety, ergonomics and user comfort.
Design and Control of Supernumerary Robotic Limbs for Near-ground Work

Supernumerary Robotic Limbs (SRLs) are a recent form of robot that augment natural human abilities through the addition of body-mounted robotic appendages which can move independently of the wearer. This thesis provides a detailed analysis of the MantisBot, an SRL morphology that provides a wearer with two torso-mounted limbs that support the body in crawling- and kneeling-like positions, such that the wearer's natural arms are free to do useful work near the ground. First, the concept and its motivations are discussed, followed by a biomechanical analysis of the human-robot system. Two full-scale prototypes are then introduced, and control laws used in supporting a wearer's body both statically using impedance control, and dynamically using predictive models of natural crawling gaits, are developed. Finally, the system is experimentally validated, and it is concluded that SRLs for near-ground work are a valid and useful tool for improving worker comfort and productivity.