Derivative Free Direct Type Global Optimization


Download Derivative Free Direct Type Global Optimization PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Derivative Free Direct Type Global Optimization book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Derivative-free DIRECT-type Global Optimization


Derivative-free DIRECT-type Global Optimization

Author: Linas Stripinis

language: en

Publisher: Springer Nature

Release Date: 2023-11-27


DOWNLOAD





After providing an in-depth introduction to derivative-free global optimization with various constraints, this book presents new original results from well-known experts on the subject. A primary focus of this book is the well-known class of deterministic DIRECT (DIviding RECTangle)-type algorithms. This book describes a new set of algorithms derived from newly developed partitioning, sampling, and selection approaches in the box- and generally-constrained global optimization, including extensions to multi-objective optimization. DIRECT-type optimization algorithms are discussed in terms of fundamental principles, potential, and boundaries of their applicability. The algorithms are analyzed from various perspectives to offer insight into their main features. This explains how and why they are effective at solving optimization problems. As part of this book, the authors also present several techniques for accelerating the DIRECT-type algorithms through parallelization and implementing efficient data structures by revealing the pros and cons of the design challenges involved. A collection of DIRECT-type algorithms described and analyzed in this book is available in DIRECTGO, a MATLAB toolbox on GitHub. Lastly, the authors demonstrate the performance of the algorithms for solving a wide range of global optimization problems with various constraints ranging from a few to hundreds of variables. Additionally, well-known practical problems from the literature are used to demonstrate the effectiveness of the developed algorithms. It is evident from these numerical results that the newly developed approaches are capable of solving problems with a wide variety of structures and complexity levels. Since implementations of the algorithms are publicly available, this monograph is full of examples showing how to use them and how to choose the most efficient ones, depending on the nature of the problem being solved. Therefore, many specialists, students, researchers, engineers, economists, computer scientists, operations researchers, and others will find this book interesting and helpful.

Numerical Computations: Theory and Algorithms


Numerical Computations: Theory and Algorithms

Author: Yaroslav D. Sergeyev

language: en

Publisher: Springer Nature

Release Date: 2020-02-13


DOWNLOAD





The two-volume set LNCS 11973 and 11974 constitute revised selected papers from the Third International Conference on Numerical Computations: Theory and Algorithms, NUMTA 2019, held in Crotone, Italy, in June 2019. This volume, LNCS 11974, consists of 19 full and 32 short papers chosen among regular papers presented at the the Conference including also the paper of the winner (Lorenzo Fiaschi, Pisa, Italy) of The Springer Young Researcher Prize for the best NUMTA 2019 presentation made by a young scientist. The papers in part II explore the advanced research developments in such interconnected fields as local and global optimization, machine learning, approximation, and differential equations. A special focus is given to advanced ideas related to methods and applications using emerging computational paradigms.

Black Box Optimization, Machine Learning, and No-Free Lunch Theorems


Black Box Optimization, Machine Learning, and No-Free Lunch Theorems

Author: Panos M. Pardalos

language: en

Publisher: Springer Nature

Release Date: 2021-05-27


DOWNLOAD





This edited volume illustrates the connections between machine learning techniques, black box optimization, and no-free lunch theorems. Each of the thirteen contributions focuses on the commonality and interdisciplinary concepts as well as the fundamentals needed to fully comprehend the impact of individual applications and problems. Current theoretical, algorithmic, and practical methods used are provided to stimulate a new effort towards innovative and efficient solutions. The book is intended for beginners who wish to achieve a broad overview of optimization methods and also for more experienced researchers as well as researchers in mathematics, optimization, operations research, quantitative logistics, data analysis, and statistics, who will benefit from access to a quick reference to key topics and methods. The coverage ranges from mathematically rigorous methods to heuristic and evolutionary approaches in an attempt to equip the reader with different viewpoints of the same problem.