Deformation Quantization For Actions Of Kahlerian Lie Groups

Download Deformation Quantization For Actions Of Kahlerian Lie Groups PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deformation Quantization For Actions Of Kahlerian Lie Groups book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.
Deformation Quantization for Actions of Kahlerian Lie Groups

Author: Pierre Bieliavsky
language: en
Publisher: American Mathematical Soc.
Release Date: 2015-06-26
Let B be a Lie group admitting a left-invariant negatively curved Kählerian structure. Consider a strongly continuous action of B on a Fréchet algebra . Denote by the associated Fréchet algebra of smooth vectors for this action. In the Abelian case BR and isometric, Marc Rieffel proved that Weyl's operator symbol composition formula (the so called Moyal product) yields a deformation through Fréchet algebra structures R on . When is a -algebra, every deformed Fréchet algebra admits a compatible pre- -structure, hence yielding a deformation theory at the level of -algebras too. In this memoir, the authors prove both analogous statements for general negatively curved Kählerian groups. The construction relies on the one hand on combining a non-Abelian version of oscillatory integral on tempered Lie groups with geom,etrical objects coming from invariant WKB-quantization of solvable symplectic symmetric spaces, and, on the second hand, in establishing a non-Abelian version of the Calderón-Vaillancourt Theorem. In particular, the authors give an oscillating kernel formula for WKB-star products on symplectic symmetric spaces that fiber over an exponential Lie group.
Developments and Retrospectives in Lie Theory

The Lie Theory Workshop, founded by Joe Wolf (UC, Berkeley), has been running for over two decades. At the beginning, the top universities in California and Utah hosted the meetings, which continue to run on a quarterly basis. Experts in representation theory/Lie theory from various parts of the US, Europe, Asia (China, Japan, Singapore, Russia), Canada, and South and Central America were routinely invited to give talks at these meetings. Nowadays, the workshops are also hosted at universities in Louisiana, Virginia, and Oklahoma. These Lie theory workshops have been sponsored by the NSF, noting the talks have been seminal in describing new perspectives in the field covering broad areas of current research. The contributors have all participated in these Lie theory workshops and include in this volume expository articles which will cover representation theory from the algebraic, geometric, analytic, and topological perspectives with also important connections to math physics. These survey articles, review and update the prominent seminal series of workshops in representation/Lie theory mentioned above, and reflects the widespread influence of those workshops in such areas as harmonic analysis, representation theory, differential geometry, algebraic geometry, number theory, and mathematical physics. Many of the contributors have had prominent roles in both the classical and modern developments of Lie theory and its applications.
Deformation Quantization for Actions of $R^d$

Author: Marc Aristide Rieffel
language: en
Publisher: American Mathematical Soc.
Release Date: 1993
This work describes a general construction of a deformation quantization for any Poisson bracket on a manifold which comes from an action of R ]d on that manifold. These deformation quantizations are strict, in the sense that the deformed product of any two functions is again a function and that there are corresponding involutions and operator norms. Many of the techniques involved are adapted from the theory of pseudo-differential operators. The construction is shown to have many favorable properties. A number of specific examples are described, ranging from basic ones such as quantum disks, quantum tori, and quantum spheres, to aspects of quantum groups.