Deep Reinforcement Learning Book Pdf


Download Deep Reinforcement Learning Book Pdf PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Reinforcement Learning Book Pdf book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages.

Download

Deep Reinforcement Learning in Action


Deep Reinforcement Learning in Action

Author: Brandon Brown

language: en

Publisher: Simon and Schuster

Release Date: 2020-03-16


DOWNLOAD





Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error. About the book Deep Reinforcement Learning in Action teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, you’ll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, you’ll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym. What's inside Building and training DRL networks The most popular DRL algorithms for learning and problem solving Evolutionary algorithms for curiosity and multi-agent learning All examples available as Jupyter Notebooks About the reader For readers with intermediate skills in Python and deep learning. About the author Alexander Zai is a machine learning engineer at Amazon AI. Brandon Brown is a machine learning and data analysis blogger. Table of Contents PART 1 - FOUNDATIONS 1. What is reinforcement learning? 2. Modeling reinforcement learning problems: Markov decision processes 3. Predicting the best states and actions: Deep Q-networks 4. Learning to pick the best policy: Policy gradient methods 5. Tackling more complex problems with actor-critic methods PART 2 - ABOVE AND BEYOND 6. Alternative optimization methods: Evolutionary algorithms 7. Distributional DQN: Getting the full story 8.Curiosity-driven exploration 9. Multi-agent reinforcement learning 10. Interpretable reinforcement learning: Attention and relational models 11. In conclusion: A review and roadmap

Deep Reinforcement Learning Hands-On


Deep Reinforcement Learning Hands-On

Author: Maxim Lapan

language: en

Publisher: Packt Publishing Ltd

Release Date: 2024-11-12


DOWNLOAD





Maxim Lapan delivers intuitive explanations and insights into complex reinforcement learning (RL) concepts, starting from the basics of RL on simple environments and tasks to modern, state-of-the-art methods Purchase of the print or Kindle book includes a free PDF eBook Key Features Learn with concise explanations, modern libraries, and diverse applications from games to stock trading and web navigation Develop deep RL models, improve their stability, and efficiently solve complex environments New content on RL from human feedback (RLHF), MuZero, and transformers Book Description Start your journey into reinforcement learning (RL) and reward yourself with the third edition of Deep Reinforcement Learning Hands-On. This book takes you through the basics of RL to more advanced concepts with the help of various applications, including game playing, discrete optimization, stock trading, and web browser navigation. By walking you through landmark research papers in the fi eld, this deep RL book will equip you with practical knowledge of RL and the theoretical foundation to understand and implement most modern RL papers. The book retains its approach of providing concise and easy-to-follow explanations from the previous editions. You'll work through practical and diverse examples, from grid environments and games to stock trading and RL agents in web environments, to give you a well-rounded understanding of RL, its capabilities, and its use cases. You'll learn about key topics, such as deep Q-networks (DQNs), policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. If you want to learn about RL through a practical approach using OpenAI Gym and PyTorch, concise explanations, and the incremental development of topics, then Deep Reinforcement Learning Hands-On, Third Edition, is your ideal companion What you will learn Stay on the cutting edge with new content on MuZero, RL with human feedback, and LLMs Evaluate RL methods, including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, and D4PG Implement RL algorithms using PyTorch and modern RL libraries Build and train deep Q-networks to solve complex tasks in Atari environments Speed up RL models using algorithmic and engineering approaches Leverage advanced techniques like proximal policy optimization (PPO) for more stable training Who this book is for This book is ideal for machine learning engineers, software engineers, and data scientists looking to learn and apply deep reinforcement learning in practice. It assumes familiarity with Python, calculus, and machine learning concepts. With practical examples and high-level overviews, it’s also suitable for experienced professionals looking to deepen their understanding of advanced deep RL methods and apply them across industries, such as gaming and finance

Practical Deep Reinforcement Learning with Python


Practical Deep Reinforcement Learning with Python

Author: Ivan Gridin

language: en

Publisher: BPB Publications

Release Date: 2022-07-15


DOWNLOAD





Introducing Practical Smart Agents Development using Python, PyTorch, and TensorFlow KEY FEATURES ● Exposure to well-known RL techniques, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical. ● Hands-on experience with TensorFlow and PyTorch on Reinforcement Learning projects. ● Everything is concise, up-to-date, and visually explained with simplified mathematics. DESCRIPTION Reinforcement learning is a fascinating branch of AI that differs from standard machine learning in several ways. Adaptation and learning in an unpredictable environment is the part of this project. There are numerous real-world applications for reinforcement learning these days, including medical, gambling, human imitation activity, and robotics. This book introduces readers to reinforcement learning from a pragmatic point of view. The book does involve mathematics, but it does not attempt to overburden the reader, who is a beginner in the field of reinforcement learning. The book brings a lot of innovative methods to the reader's attention in much practical learning, including Monte-Carlo, Deep Q-Learning, Policy Gradient, and Actor-Critical methods. While you understand these techniques in detail, the book also provides a real implementation of these methods and techniques using the power of TensorFlow and PyTorch. The book covers some enticing projects that show the power of reinforcement learning, and not to mention that everything is concise, up-to-date, and visually explained. After finishing this book, the reader will have a thorough, intuitive understanding of modern reinforcement learning and its applications, which will tremendously aid them in delving into the interesting field of reinforcement learning. WHAT YOU WILL LEARN ● Familiarize yourself with the fundamentals of Reinforcement Learning and Deep Reinforcement Learning. ● Make use of Python and Gym framework to model an external environment. ● Apply classical Q-learning, Monte Carlo, Policy Gradient, and Thompson sampling techniques. ● Explore TensorFlow and PyTorch to practice the fundamentals of deep reinforcement learning. ● Design a smart agent for a particular problem using a specific technique. WHO THIS BOOK IS FOR This book is for machine learning engineers, deep learning fanatics, AI software developers, data scientists, and other data professionals eager to learn and apply Reinforcement Learning to ongoing projects. No specialized knowledge of machine learning is necessary; however, proficiency in Python is desired. TABLE OF CONTENTS Part I 1. Introducing Reinforcement Learning 2. Playing Monopoly and Markov Decision Process 3. Training in Gym 4. Struggling With Multi-Armed Bandits 5. Blackjack in Monte Carlo 6. Escaping Maze With Q-Learning 7. Discretization Part II. Deep Reinforcement Learning 8. TensorFlow, PyTorch, and Your First Neural Network 9. Deep Q-Network and Lunar Lander 10. Defending Atlantis With Double Deep Q-Network 11. From Q-Learning to Policy-Gradient 12. Stock Trading With Actor-Critic 13. What Is Next?